BibliotecaPortal de investigación
es | en | GAL
  • Inicio
  • Contact us
  • Give feedback
  • Help
    • About Investigo
    • Search and Find
    • Submit
    • Intellectual Property
    • Open Access Policy
  • Links
    • Sherpa / Romeo
    • Dulcinea
    • OpenDOAR
    • Dialnet Plus
    • ORCID
    • Creative Commons
    • UNESCO Nomenclature
    • español
    • English
    • Galician
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of InvestigoAuthorsTitles Materias Unesco Research GroupsType of ContentsJournal TitlesThis CollectionAuthorsTitlesUNESCO SubjectsResearch GroupsType of ContentsJournal Titles

Depositar

Guía de autoarchivo (en construcción)Solicitar permiso a una editorial

Statistics

View Usage Statistics

Nonparametric estimation of transition probabilities for a general progressive multi-state model under cross-sectional sampling

De Uña Alvarez, JacoboAutor UVIGO; Mandel, Micha
Date: 2018
UNIVERSAL IDENTIFIER: http://hdl.handle.net/11093/1227
UNESCO SUBJECT: 12 Matemáticas ; 1208 Probabilidad ; 1209 Estadística
DOCUMENT TYPE: article

Abstract

Nonparametric estimation of the transition probability matrix of a progressive multi‐state model is considered under cross‐sectional sampling. Two different estimators adapted to possibly right‐censored and left‐truncated data are proposed. The estimators require full retrospective information before the truncation time, which, when exploited, increases efficiency. They are obtained as differences between two survival functions constructed for sub‐samples of subjects occupying specific states at a certain time point. Both estimators correct the oversampling of relatively large survival times by using the left‐truncation times associated with the cross‐sectional observation. Asymptotic results are established, and finite sample performance is investigated through simulations. One of the proposed estimators performs better when there is no censoring, while the second one is strongly recommended with censored data. The new estimators are applied to data on patients in intensive care units (ICUs).
Show full item record

Files in this item

[PDF]
Name:
2018_tp_crosssection_R2_biomst ...
Size:
350.3Kb
Format:
PDF
View/Open

El Repositorio Institucional de la Universidade de Vigo Investigo se difunden en:

INFORMACIÓN
+34 986 913 921
investigo@uvigo.es

Accesibilidad | Aviso legal | Protección de datos
Logo UVigo

INFORMACIÓN
+34 986 812 000
informacion@uvigo.es

CONTACTO

CAMPUS DO MAR

CAMPUS DE OURENSE
+34 988 387 102
Campus da Auga

CAIXA DE QUEIXAS, SUXESTIÓNS E PARABÉNS

TRANSPARENCIA

CAMPUS DE PONTEVEDRA
+34 986 801 949
Campus CREA

OUTRAS WEBS INSTITUCIONAIS

EMERXENCIAS

CAMPUS DE VIGO
+34 986 812 000
Campus Vigo Tecnolóxico

MURO SOCIAL