Repositorio UVigo

Iron-loaded catalytic silicate adsorbents: synthesis, characterization, electroregeneration and application for continuous removal of 1-butylpyridinium chloride

Investigo Repository

Iron-loaded catalytic silicate adsorbents: synthesis, characterization, electroregeneration and application for continuous removal of 1-butylpyridinium chloride

Ouiriemmi, Imen; Diez Sarabia, Aida Maria; Pazos Curras, Marta Maria; Sanromán Braga, María Ángeles
 
DATE : 2020-08-20
UNIVERSAL IDENTIFIER : http://hdl.handle.net/11093/1613
UNESCO SUBJECT : 3308 Ingeniería y Tecnología del Medio Ambiente ; 2391 Química Ambiental ; 3303.03 Procesos Químicos
DOCUMENT TYPE : article

ABSTRACT :

This research proposes the application of iron-loaded sepiolite (S-Fe) as a catalytic adsorbent for the unreported 1-butylpyridinium chloride ([bpy] Cl) treatment in an aqueous medium. Initially, sepiolite was selected as an inexpensive and efficacious adsorbent for [bpy] Cl elimination. After that, sepiolite was loaded with iron for the subsequent electro-Fenton (EF) regeneration treatment. Once kinetic and isotherm studies were performed, providing respectively almost instantaneous adsorption (20 min) and an uptake of 22.85 mg/g, [bpy] Cl adsorption onto S-Fe was studied in continuous mode. The obtained breakthrough curve was analyzed using three standard breakthrough models, being Yoon–Nelson and Thomas the most suitable adjustments. Afterwards, S-Fe regeneration by the EF process was conducted using this iron-loaded silicate material as a heterogeneous catalyst. Under optimized operational conditions (current intensity 300 mA and Na2SO4 0.3 M), complete adsorbent regeneration was achieved in 10 h. The total mineralization of [bpy] Cl was reached within 24 h and among seven ... [+]
This research proposes the application of iron-loaded sepiolite (S-Fe) as a catalytic adsorbent for the unreported 1-butylpyridinium chloride ([bpy] Cl) treatment in an aqueous medium. Initially, sepiolite was selected as an inexpensive and efficacious adsorbent for [bpy] Cl elimination. After that, sepiolite was loaded with iron for the subsequent electro-Fenton (EF) regeneration treatment. Once kinetic and isotherm studies were performed, providing respectively almost instantaneous adsorption (20 min) and an uptake of 22.85 mg/g, [bpy] Cl adsorption onto S-Fe was studied in continuous mode. The obtained breakthrough curve was analyzed using three standard breakthrough models, being Yoon–Nelson and Thomas the most suitable adjustments. Afterwards, S-Fe regeneration by the EF process was conducted using this iron-loaded silicate material as a heterogeneous catalyst. Under optimized operational conditions (current intensity 300 mA and Na2SO4 0.3 M), complete adsorbent regeneration was achieved in 10 h. The total mineralization of [bpy] Cl was reached within 24 h and among seven carboxylic acids detected, oxalic and acetic acids seem to be the primary carboxylic acids produced by [bpy] Cl degradation. Finally, S-Fe was efficiently used in four consecutive adsorption–regeneration cycles without a noticeable reduction in its adsorption capacity, opening a path for future uses. [-]

Show full item record



Files in this item

Creative Commons Attribution
(CC BY) license Except where otherwise noted, this item's license is described as Creative Commons Attribution (CC BY) license
2013 Universidade de Vigo, Todos los derechos reservados
Calidad So9001