Repositorio UVigo

Analysis of damage models for cortical bone

Investigo Repository

Analysis of damage models for cortical bone

González Baldonedo, Jacobo; Fernández García, José Ramón; López Campos, José Ángel; Segade Robleda, Abraham
 
DATE : 2019-07-03
UNIVERSAL IDENTIFIER : http://hdl.handle.net/11093/1667
UNESCO SUBJECT : 1202 Análisis y Análisis Funcional ; 2406.04 Biomecánica
DOCUMENT TYPE : article

ABSTRACT :

Bone tissue is a material with a complex structure and mechanical properties. Diseases or even normal repetitive loads may cause microfractures to appear in the bone structure, leading to a deterioration of its properties. A better understanding of this phenomenon will lead to better predictions of bone fracture or bone-implant performance. In this work, the model proposed by Frémond and Nedjar in 1996 (initially for concrete structures) is numerically analyzed and compared against a bone specific mechanical model proposed by García et al. in 2009. The objective is to evaluate both models implemented with a finite element method. This will allow us to determine if the modified Frémond–Nedjar model is adequate for this purpose. We show that, in one dimension, both models show similar results, reproducing the qualitative behaviour of bone subjected to typical engineering tests. In particular, the Frémond–Nedjar model with the introduced modifications shows good agreement with experimental data. Finally, some two-dimensional results are also provided for the Frémond–Nedjar model to ... [+]
Bone tissue is a material with a complex structure and mechanical properties. Diseases or even normal repetitive loads may cause microfractures to appear in the bone structure, leading to a deterioration of its properties. A better understanding of this phenomenon will lead to better predictions of bone fracture or bone-implant performance. In this work, the model proposed by Frémond and Nedjar in 1996 (initially for concrete structures) is numerically analyzed and compared against a bone specific mechanical model proposed by García et al. in 2009. The objective is to evaluate both models implemented with a finite element method. This will allow us to determine if the modified Frémond–Nedjar model is adequate for this purpose. We show that, in one dimension, both models show similar results, reproducing the qualitative behaviour of bone subjected to typical engineering tests. In particular, the Frémond–Nedjar model with the introduced modifications shows good agreement with experimental data. Finally, some two-dimensional results are also provided for the Frémond–Nedjar model to show its behaviour in the simulation of a real tensile test. [-]

Show full item record



Files in this item

Attribution 4.0 International (CC BY 4.0) Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)
2013 Universidade de Vigo, Todos los derechos reservados
Calidad So9001