Repositorio UVigo

Combining medicinal plant in vitro culture with machine learning technologies for maximizing the production of phenolic compounds

Investigo Repository

Combining medicinal plant in vitro culture with machine learning technologies for maximizing the production of phenolic compounds

García Pérez, Pascual; Lozano Milo, Eva; Landín Pérez, Mariana; Gallego Veigas, Pedro Pablo
 
DATE : 2020-03-04
UNIVERSAL IDENTIFIER : http://hdl.handle.net/11093/1762
UNESCO SUBJECT : 2417.19 Fisiología Vegetal ; 3302 Tecnología Bioquímica ; 1203.04 Inteligencia Artificial
DOCUMENT TYPE : article

ABSTRACT :

We combined machine learning and plant in vitro culture methodologies as a novel approach for unraveling the phytochemical potential of unexploited medicinal plants. In order to induce phenolic compound biosynthesis, the in vitro culture of three different species of Bryophyllum under nutritional stress was established. To optimize phenolic extraction, four solvents with different MeOH proportions were used, and total phenolic content (TPC), flavonoid content (FC) and radical-scavenging activity (RSA) were determined. All results were subjected to data modeling with the application of artificial neural networks to provide insight into the significant factors that influence such multifactorial processes. Our findings suggest that aerial parts accumulate a higher proportion of phenolic compounds and flavonoids in comparison to roots. TPC was increased under ammonium concentrations below 15 mM, and their extraction was maximum when using solvents with intermediate methanol proportions (55–85%). The same behavior was reported for RSA, and, conversely, FC was independent of culture ... [+]
We combined machine learning and plant in vitro culture methodologies as a novel approach for unraveling the phytochemical potential of unexploited medicinal plants. In order to induce phenolic compound biosynthesis, the in vitro culture of three different species of Bryophyllum under nutritional stress was established. To optimize phenolic extraction, four solvents with different MeOH proportions were used, and total phenolic content (TPC), flavonoid content (FC) and radical-scavenging activity (RSA) were determined. All results were subjected to data modeling with the application of artificial neural networks to provide insight into the significant factors that influence such multifactorial processes. Our findings suggest that aerial parts accumulate a higher proportion of phenolic compounds and flavonoids in comparison to roots. TPC was increased under ammonium concentrations below 15 mM, and their extraction was maximum when using solvents with intermediate methanol proportions (55–85%). The same behavior was reported for RSA, and, conversely, FC was independent of culture media composition, and their extraction was enhanced using solvents with high methanol proportions (>85%). These findings confer a wide perspective about the relationship between abiotic stress and secondary metabolism and could serve as the starting point for the optimization of bioactive compound production at a biotechnological scale. [-]

Show full item record



Files in this item

Creative Commons Attribution
(CC BY) license Except where otherwise noted, this item's license is described as Creative Commons Attribution (CC BY) license
2013 Universidade de Vigo, Todos los derechos reservados
Calidad So9001