Repositorio UVigo

Advances in plasmonic sensing at the NIR—A review

Investigo Repository

Advances in plasmonic sensing at the NIR—A review

Santos, Paulo S.S. dos; Almeida, José M. M. M. de; Pastoriza Santos, Isabel; Coelho, Luís C. C.
 
DATE : 2021-03-17
UNIVERSAL IDENTIFIER : http://hdl.handle.net/11093/2060
UNESCO SUBJECT : 2209.05 Fibras Ópticas ; 3311.11 Instrumentos Opticos ; 2301 Química Analítica
DOCUMENT TYPE : article

ABSTRACT :

Surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) are among the most common and powerful label-free refractive index-based biosensing techniques available nowadays. Focusing on LSPR sensors, their performance is highly dependent on the size, shape, and nature of the nanomaterial employed. Indeed, the tailoring of those parameters allows the development of LSPR sensors with a tunable wavelength range between the ultra-violet (UV) and near infra-red (NIR). Furthermore, dealing with LSPR along optical fiber technology, with their low attenuation coefficients at NIR, allow for the possibility to create ultra-sensitive and long-range sensing networks to be deployed in a variety of both biological and chemical sensors. This work provides a detailed review of the key science underpinning such systems as well as recent progress in the development of several LSPR-based biosensors in the NIR wavelengths, including an overview of the LSPR phenomena along recent developments in the field of nanomaterials and nanostructure development towards NIR sensing. The review ... [+]
Surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) are among the most common and powerful label-free refractive index-based biosensing techniques available nowadays. Focusing on LSPR sensors, their performance is highly dependent on the size, shape, and nature of the nanomaterial employed. Indeed, the tailoring of those parameters allows the development of LSPR sensors with a tunable wavelength range between the ultra-violet (UV) and near infra-red (NIR). Furthermore, dealing with LSPR along optical fiber technology, with their low attenuation coefficients at NIR, allow for the possibility to create ultra-sensitive and long-range sensing networks to be deployed in a variety of both biological and chemical sensors. This work provides a detailed review of the key science underpinning such systems as well as recent progress in the development of several LSPR-based biosensors in the NIR wavelengths, including an overview of the LSPR phenomena along recent developments in the field of nanomaterials and nanostructure development towards NIR sensing. The review ends with a consideration of key advances in terms of nanostructure characteristics for LSPR sensing and prospects for future research and advances in this field. [-]

Show full item record



Files in this item

Creative Commons Attribution
(CC BY) license Except where otherwise noted, this item's license is described as Creative Commons Attribution (CC BY) license
2013 Universidade de Vigo, Todos los derechos reservados
Calidad So9001