Repositorio UVigo

Optimal recovery of valuable biomaterials, chondroitin sulfate and bioapatites, from central skeleton wastes of blue shark

Investigo Repository

Optimal recovery of valuable biomaterials, chondroitin sulfate and bioapatites, from central skeleton wastes of blue shark

Vázquez, José Antonio; Fraguas, Javier; González Fernández, Pío Manuel; Serra Rodríguez, Julia Asuncion; Valcarcel, Jesús
 
DATE : 2020-11-06
UNIVERSAL IDENTIFIER : http://hdl.handle.net/11093/2238
UNESCO SUBJECT : 3314 Tecnología Médica ; 3312 Tecnología de Materiales ; 3303 Ingeniería y Tecnología Químicas
DOCUMENT TYPE : article

ABSTRACT :

The industrial filleting of blue shark (Prionace glauca) led to the generation of a large number of central skeletons of low interest to fishmeal plants handling such wastes. In this context, the present study describes the optimization of the hydrolysis process (pH 8.35, T 58 °C, 1% (v/w) of alcalase and t = 4 h) to produce chondroitin sulfate (CS) together with the recovery of bioapatites. Then, that hydrolysate was chemically treated with an optimal alkaline-hydroalcoholic-saline solution (0.48 M of NaOH, 1.07 volumes of EtOH and 2.5 g/L of NaCl) and finally purified by ultrafiltration-diafiltration (30 kDa) to obtain glycosaminoglycan with a purity of 97% and a productive yield of 2.8% (w/w of skeleton). The size of the biopolymer (CS) was of 58 kDa with prevalence of 6S-GalNAc sulfation (4S/6S ratio of 0.25), 12% of GlcA 2S-GalNAc 6S and 6% of non-sulfated disaccharides. Crude bioapatites were purified by pyrolysis and FT-Raman and XRD techniques confirm the presence of hydroxyapatite [Ca5(PO4)3(OH)], with a molar mass of 502.3 g/mol, embedded in the organic matrix of the ... [+]
The industrial filleting of blue shark (Prionace glauca) led to the generation of a large number of central skeletons of low interest to fishmeal plants handling such wastes. In this context, the present study describes the optimization of the hydrolysis process (pH 8.35, T 58 °C, 1% (v/w) of alcalase and t = 4 h) to produce chondroitin sulfate (CS) together with the recovery of bioapatites. Then, that hydrolysate was chemically treated with an optimal alkaline-hydroalcoholic-saline solution (0.48 M of NaOH, 1.07 volumes of EtOH and 2.5 g/L of NaCl) and finally purified by ultrafiltration-diafiltration (30 kDa) to obtain glycosaminoglycan with a purity of 97% and a productive yield of 2.8% (w/w of skeleton). The size of the biopolymer (CS) was of 58 kDa with prevalence of 6S-GalNAc sulfation (4S/6S ratio of 0.25), 12% of GlcA 2S-GalNAc 6S and 6% of non-sulfated disaccharides. Crude bioapatites were purified by pyrolysis and FT-Raman and XRD techniques confirm the presence of hydroxyapatite [Ca5(PO4)3(OH)], with a molar mass of 502.3 g/mol, embedded in the organic matrix of the skeleton. The mineralized tissues of blue shark are promising marine sources for the extraction of high value biomaterials with clinical application in bone and tissue regeneration and are still completely unexplored. [-]

Show full item record



Files in this item

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International
2013 Universidade de Vigo, Todos los derechos reservados
Calidad So9001