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Abstract

This paper introduces a new class of games, highway games, which arise from situations

where there is a common resource that agents will jointly use. That resource is an ordered

set of several indivisible sections, where each section has an associated fixed cost and each

agent requires some consecutive sections. We present an easy formula to calculate the

Shapley value, and we present an efficient procedure to calculate the nucleolus for this

class of games.
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1 Introduction

In this paper, we consider situations where several agents use the same public resource, where
the resource consists of a finite number of ordered sections, each with its corresponding cost,
and where each agent makes use of a consecutive set of these sections. A simple example
that illustrates the situation is the case of a linear highway. The sections are delimited by the
entry and exit points and its cost depends on the section length and on the number of vehicles
that use the section. Each car or truck only needs the highway sections between his entry
and exit point. Obviously, this is a simplification of a highway. In a general highway other
issues of primary importance, as the congestion problem, can be considered. In our context,
congestion does not appear explicitly, but it may be implicit in the cost of each section. The
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congestion problem of a highway (network) has been studied from a non-cooperative game
point of view (Rosenthal, 1973) and, more recently, from an evolutionary game theory point
of view (Sandholm, 2002). In a classical congestion problem, the agents have several options
to get from a point to another in the network and the cost of an agent depends on the route he
chooses, the amount of traffic on his route, and the toll. The agents have to choose a probability
distribution over their options and one tries to find an equilibrium. A linear highway model
does not lend itself for this approach since agents have only one way to get from a point
to another. Moreover, congestion is not really the problem for our practical application in
Spain and the paying toll is a tool of the highway managers to be paid back part (or all) of
its investment. From now on, for clarity of presentation, we consider a linear highway as the
public resource.

We address the problem of sharing the cost of such a highway among its users. We are
interested in sharing cost methods which are based on the following principles: to exactly al-
locate the total cost of the highway; and to be axiomatized by axioms which many consider
as reasonable and fair. Although these principles are widely accepted, the results on highway
cost allocation are very often controversial. Allocating a cost share involves several factors
such as different classes of vehicles, traffic characteristics, congestion, environmental factors,
and so on. Some of the procedures to assign costs are proportional to the road length trav-
eled, the passenger car equivalence, the single axle load equivalence, etc. Other methods are
known as incremental: vehicle classes are introduced sequentially starting from the lightest
one, and each time a new class is introduced the corresponding increment is allocated to this
class. In turn, the U. S. Federal Highway Administration (1997) allocates construction costs
and maintenance costs separately.

Cooperative game theory has proved to be very useful for finding “fair” methods for shar-
ing common costs. The reader is referred to e.g. Young (1985) for applications. In the par-
ticular case of highway cost allocation, game theory was successfully applied in Villarreal-
Cavazos and García-Díaz (1985), Makrigeorgis (1991), and Castaño-Pardo and García-Díaz
(1995), where the cost shares were allocated to the different vehicle classes. In contrast, Dong
et al. (2012) allocates these shares between all the potential users, instead of the vehicle classes.

In this paper, we propose a simple transferable utility (TU) game model called highway
game for this problem. In the model we assume that an agent is completely characterized by
the sections it uses, which means that all vehicles in our model are of the same class. We also
assume that each section has a fixed cost, which corresponds to either initial construction costs
or to periodical maintenance costs. We then analyze the behavior of two well-known solutions
concepts for TU games on the class of highway games, and we apply them on realistic data.
Our model is similar to that in Dong et al. (2012). The main difference with our work is in
its purpose. They deal with axiomatizations of a cost sharing method (toll pricing method),
while we focus on the computation of the Shapley value (Shapley, 1953) and the nucleolus
(Schmeidler, 1969).
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It turns out that the Shapley value corresponds to a very simple way of sharing costs. We
show that it allocates the cost of each section equally among the agents who use it. Another
classes of games where Shapley value adopts very simple formulation are airport games (Lit-
tlechild and Owen, 1973), tree games (Megiddo, 1978; Granot et al., 2002), convex big boss
games (Muto et al., 1988), sequencing games (Curiel et al., 1989), infrastructure games (Frag-
nelli et al., 2000), peer group games (Brânzei et al., 2002), and weighted majority games (Al-
gaba et al., 2003) among others. Dong et al. (2012) show that the Shapley value coincides with
the toll pricing method defined there. Moreover they also axiomatize it in the class of highway
toll problems.

The nucleolus is more difficult to analyze. In Luskin et al. (2001) several methods are com-
pared, and these authors recommend the nucleolus, despite the difficulties in computing it.
In Villarreal-Cavazos and García-Díaz (1985) the use of the nucleolus (called by these authors
the generalized method) is also suggested for sharing costs in a practical highway situation. In
addition to these practical recommendations, the nucleolus is also supported by several axiom-
atizations. Perhaps one of the nicest appears in Sobolev (1975) (actually it is an axiomatization
for the prenucleolus). Almost all the axioms used in Sobolev’s axiomatization are satisfied by
the nucleolus in the class of highway games. Nevertheless, the axiom of covariance can not be
applied for highway games since, if an additive game is added to a highway game, the result
is not necessarily a highway game. One could think in using axioms defined for the high-
way model setting, as those defined by Dong et al. (2012). Nucleolus satisfies stand alone test
and dummy but it does not satisfy cost recovery, routing-proofness, additivity and toll upper
bound, as they are stated in Dong et al. (2012). It seems hard to axiomatize the nucleolus in
the class of highway games. It deserves a deeper analysis and we leave it for further research.
Instead, we focus on to find a computationally efficient way of calculating the nucleolus of a
highway game which takes up most of the length of this paper. We prove in this paper that
highway games are concave, and although theoretically computationally efficient algorithms
for the nucleolus exist for the entire class of concave games (Kuipers, 1996 and Faigle et al.,
2001), these algorithms do not perform well in practice. Efficient and practical algorithms have
already been developed for calculating the nucleolus of several special classes of games, e.g.
for standard tree games (Megiddo, 1978; Granot et al., 1996), assignment games (Solymosi and
Raghavan, 1994), flow games (Potters et al., 2006), and peer games (Brânzei et al., 2005). The
algorithms described in these papers are all based on the fact that a small family of coalitions
determines the nucleolus. We too prove that the nucleolus of highway games is determined by
a small family of coalitions, and we exploit it in our algorithm. In our approach, we combine it
with the fact that the determining family for the nucleolus must satisfy a special version of the
Kohlberg criterium for concave games, a theorem proved by Arin and Iñarra (1998). We then
apply the theory of reduced games (Maschler et al., 1972) and prove that the problem reduces
to one or two smaller games that are also highway games. This yields a recursive algorithm
for the nucleolus, for which we derived a worst-case complexity of O(m5), where m is the
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number of sections.
It is worth mentioning that the class of airport games is a special subclass of highway

games, and that our results are a generalization of the results in that paper. On the other hand,
the class of savings games derived from highway games is a subclass of the class of realization
games, introduced by Koster et al. (2003) to study the allocation of public goods. The results in
that paper for concavity and the Shapley value generalize our results concerning these issues.
Besides, one can consider extending our model to the case of a network. This is not an easy
task as it is pointed out in Çiftçi et al. (2010). Based on a preliminary version of our paper,
they extend our model to a network. They show that, for keeping the concavity property
of the games, one has to restrict the shape of the network to a very particular one: weakly
cyclic networks where each cycle is composed by exactly three edges (what is called a weakly
triangular graph).

The paper is organized as follows. In Section 2, we introduce highway problems and their
related games, and we derive the results for concavity and the Shapley value of those games.
Section 3 is devoted to the nucleolus and to its algorithm. Finally, we present in Section 4 a
practical case where our results can be compared with the official rates.

2 Highway problems and highway games

A highway problem is a 4-tuple Γ = (N, M, C, T), where N is a finite set of agents, M is a finite
and completely ordered set of sections, C : M → R++ represents the cost of each section, and
T : N → 2M is a mapping that represents, for each agent i ∈ N, the set of sections T(i) ⊆ M
used by that agent. Since each agent uses a consecutive set of sections, we require that each
T(i) is of the form {t ∈ M | ai ≤ t ≤ bi}. Here, ai is the first section (minimal in the ordering)
used by agent i, and bi is the last section (maximal in the ordering) used by i. We also require
that every section is used by at least 1 agent, i.e. we require ∪i∈NT(i) = M. In case the defining
4-tuple of a highway problem Γ is not stated, the agent set of Γ will be denoted by NΓ, the set
of sections by MΓ, etcetera.

Remark 2.1. Notice that a highway problem (N, M, C, T) corresponds to an airport problem
(Littlechild and Thompson, 1977) if min T(i) = min M for all i ∈ N. �

Let us illustrate the former definition with an example.

Example 2.1. Figure 1 represents a small highway problem for the highway that connects A
Coruña with Vigo in Spain. Four agents that use the highway are depicted as line-pieces
below the highway. The agents are numbered 1,2,3, and 4. Assuming that these are the only
agents, we define N = {1, 2, 3, 4}. The black dots in the highway represent the entrances and
exits which divide the highway into 4 sections: A Coruña−Santiago (1); Santiago−Padrón
(2); Padrón−Pontevedra (3); and Pontevedra−Vigo (4). Then, we define the set of sections as
M = {1, 2, 3, 4} with the natural ordering. Let us assign costs to those sections: C(1) = 8,
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C(2) = 4, C(3) = 6, and C(4) = 6. Since agent 1 travels only section 1 between A Coruña and
Santiago, we define T(1) = {1}; agent 2 travels between Padrón and Vigo, so T(2) = {3, 4};
agent 3 between A Coruña and Pontevedra, so T(3) = {1, 2, 3}; and agent 4 travels between
Santiago and Vigo, so T(4) = {2, 3, 4}.

A Coruña Vigo

Santiago
Padrón

Pontevedra

1 2
3

4

8 4 6 6

Figure 1: Linear highway of Example 2.1.

Notice that the sets T(i) are all consecutive and that each section is in least 1 of the sets T(i).
Hence, the 4-tuple Γ = (N, M, C, T) is indeed a highway problem, and Figure 1 is its informal
representation. 3

Let us refer to ∑t∈M C(t) as the cost of a highway problem (N, M, C, T). It is of course pos-
sible to allocate the cost of a highway problem without any game-theoretic model. A natural
way of sharing costs in a highway problem is to share the cost of each resource section equally
among the agents who use it. We define the allocation rule ζ by

ζi(Γ) = ∑
t∈T(i)

C(t)∣∣ {j ∈ N | t ∈ T(j)}
∣∣ (1)

for every highway problem Γ = (N, M, C, T), and every agent i ∈ N. Notice that ζ is well
defined and allocates the total cost due to the fact ∪i∈NT(i) = M. For Example 2.1, one can
verify that ζ = (4, 5, 8, 7).

Let us now recall some basic game theory definitions. A cooperative cost game with transfer-
able utility, or game, is a pair (N, c), where N is a finite set of players, and c : 2N −→ R is the
characteristic function, which is a mapping c that assigns to each subset S ⊆ N of players a cost
c(S), with c(∅) = 0. The nonempty subsets of N are called coalitions.

Given a highway problem Γ = (N, M, C, T), we define an associated game (N, c) by

c(S) = C(T(S)) for all S ⊆ N.

Here, for any S ⊆ N, the notation T(S) denotes ∪i∈ST(i), and for any M′ ⊆ M, the notation
C(M′) denotes ∑t∈M′ C(t). That is, the cost incurred by coalition S is defined as the total cost
of the sections used by members of S. We say that (N, c) is the highway game associated with Γ.

Example 2.2. The highway game associated with the highway problem defined in Example 2.1
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is
S ∅ {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4}

c(S) 0 8 12 18 16 20 18 24 24 16

S {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N
c(S) 24 24 24 24 24 24

Remark 2.2. Koster et al. (2003) introduced the class of realization problems to study allocation
of public goods. One of their approaches was to associate a cooperative realization game with
each problem. Let Γ = (N, M, C, T) be a highway problem. If we define wi = c

(
{i}
)
, then the

5-tuple Ω = (N, M, T, w, C) is a realization problem as defined in the aforementioned work.
Moreover, the realization game (N, v) associated with Ω and the highway game associated
with Γ have the relationship v(S) = ∑i∈S c({i})− c(S). Thus, the savings games derived from
highway games form a subclass of realization games. The results we present in this intro-
ductory section are, after a transformation from cost to savings game, specializations of more
general results in Koster et al. (2003). �

In cooperative game theory, a vector x ∈ RN can be interpreted as the share of the cost
allocated to player i ∈ N in any game (N, c) and is called an allocation for (N, c). An allocation
x ∈ RN is efficient for (N, c) if ∑i∈N xi = c(N), i.e. if the shares of the players sum up to the
total cost. A value for a class of games is a mapping ψ that associates with each game (N, c) in
the class an efficient allocation ψ(N, c) ∈ RN. A value for a class of games defines an allocation
rule for a highway problem in an obvious way, provided that the class contains all highway
games.

A well-known value is the Shapley value (Shapley, 1953), which is defined for the class of all
games. The Shapley value associates with each game (N, c) the allocation Φ(N, c) defined by

Φi(N, c) = ∑
S⊆N,S3i

(|S| − 1)!(|N| − |S|)!
|N|! (c(S)− c(S \ {i})) (2)

for each player i ∈ N. Our first result relates the Shapley value with the highway allocation
rule ζ defined at the beginning of this section.

Proposition 2.1. Let Γ be a highway problem and let (N, c) be its associated highway game. Then

Φ(N, c) = ζ(Γ).

Proof. Let Γ = (N, M, C, T). For every t ∈ M, define the game (N, ct) by

ct(S) =

{
C(t) if t ∈ T(S),

0 otherwise,

for all S ⊆ N. Notice that c = ∑t∈M ct.
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It is well-known that the Shapley value is efficient (Shapley, 1953). Further, it is clear
from (2) that the Shapley value satisfies the property of symmetry: Φi(N, c) = Φj(N, c) for
i, j ∈ N whenever c(S ∪ {i}) = c(S ∪ {j}) for all S ⊆ N \ {i, j}. It is also clear from (2) that the
Shapley value satisfies the null player property: Φi(N, c) = 0 whenever c(S ∪ {i}) = c(S) for
all S ⊆ N \ {i} . Then,

Φi(N, ct) =


C(t)∣∣ {j ∈ N | t ∈ T(j)}

∣∣ if t ∈ T(i)

0 otherwise.

Moreover, the Shapley value is additive (Shapley, 1953): Φ(N, c) + Φ(N, d) = Φ(N, c + d) for
all games (N, c), (N, d). We therefore obtain for each i ∈ N

Φi(N, c) = ∑
t∈M

Φi(N, ct) = ∑
t∈T(i)

Φi(N, ct) = ζ(Γ).

We conclude this section with two properties of highway games that are relevant for this
paper. A game (N, c) is said to be monotone if c(S) ≤ c(T) for all S, T with S ⊆ T ⊆ N. The
game is said to be concave if c(S) + c(T) ≥ c(S ∪ T) + c(S ∩ T) for each S, T ⊆ N.

Proposition 2.2. Let (N, M, C, T) be a highway problem. Then the associated game (N, c) is monotone
and concave.

Proof. Let S ⊆ R ⊆ N. Since T(S) ⊆ T(R) and C(t) ≥ 0 for each t ∈ M, we have that
c(S) = ∑t∈T(S) C(t) ≤ ∑t∈T(R) C(t) = c(R). Therefore, (N, c) is monotone.

Let S, R ⊆ N. Then,

c(S) + c(R) = C(T(S)) + C(T(R))

= C(T(S) ∪ T(R)) + C(T(S) ∩ T(R))

≥ C(T(S ∪ R)) + C(T(S ∩ R))

= c(S ∪ R) + c(S ∩ R),

where the inequality follows since C(t) ≥ 0 for each t ∈ M, T(S ∪ R) = T(S) ∪ T(R) and
T(S ∩ T) ⊆ T(S) ∩ T(R). Therefore, (N, c) is concave.

3 The nucleolus of highway games

The nucleolus is another well-known value for games. It is defined for games (N, c) that satisfy
the condition c(N) ≤ ∑i∈N c({i}). This condition equates to the existence of an imputation, i.e.
an efficient allocation x satisfying xi ≤ c({i}) for all i ∈ N. Notice that highway games satisfy
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the condition. If we measure the ‘happiness’of a coalition S with respect to an allocation x by
the number c(S) − x(S), then the nucleolus is the unique imputation such that no coalition
can increase its happiness without decreasing the happiness of a coalition with less happiness
already.

Formally, for a game (N, c), an allocation x ∈ RN, and a coalition S ⊆ N, the excess of S at
x is defined by e(S, x) := c(S)− x(S). The vector in R2|N| obtained by arranging the excesses
of all coalitions at x in non-decreasing order is denoted by θ(x). Further, for φ, ψ ∈ R2|N| , it
is said that φ is lexicographically greater than ψ if s ∈ {1, . . . , 2|N|} exists such that φk = ψk for
each k ∈ {1, . . . , s− 1} and φs > ψs. If φ is lexicographically greater than ψ or if φ = ψ, we
write φ ≥L ψ. Now, the nucleolus ν(N, c) of (N, c) is defined (Schmeidler, 1969) as the set of
imputations that lexicographically maximizes θ(x) over the set of all imputations, i.e.

ν(N, c) = {x ∈ I(N, c) | θ(x) ≥L θ(y) for all y ∈ I(N, c)} ,

where I(N, c) denotes the set of imputations for (N, c). It was proved by Schmeidler (1969)
that ν(N, c) consists of a unique imputation if I(N, c) 6= ∅ (otherwise ν(N, c) = ∅). If no
confusion arises, we write ν for the nucleolus of a game (N, c).

3.1 The nucleolus of a concave game

For a game (N, c), let D(N, c) denote the family of proper coalitions of N with minimal excess
at ν, i.e.

D(N, c) = {S ⊂ N | e(S, ν) ≤ e(T, ν), for all T ⊂ N, S, T 6= ∅} .

We write D if no confusion can arise. A result for the nucleolus of concave games due to
Arin and Iñarra (1998)1 is crucial in our method for determining the nucleolus of highway
games. In the terminology of Arin and Iñarra, a family A of coalitions is an antipartition of N
if {N \ S | S ∈ A} is a partition of N. Their result is then stated as

Proposition 3.1 (Arin and Iñarra, 1998). For any concave game (N, c) the family D contains a
partition or an antipartition of N.

Proposition 3.1 can be used to determine the nucleolus of a concave game as follows. Let
(N, c) be a game, let x ∈ Rn be an eficient allocation, and let A be a nonempty family of
coalitions of N. Define the average excess of A at x by

e(A, x) = ∑S∈A e(S, x)
|A|

If A is a partition of N then

e(A, x) = ∑S∈A c(S)− c(N)

|A| ,

1They stated Proposition 3.1 in terms of convex games.
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and if A is an antipartition of N then

e(A, x) =
∑S∈A c(S)−

(
|A| − 1

)
c(N)

|A| .

Notice that in both cases, the average excess does not depend on x. It follows by Proposition 3.1
that

e(D, ν) = min{e(A, ν) | A is a partition or an antipartition of N}.

Since the numbers e(A, ν) in this minimization do not depend on ν, it is possible to determine
e(D, ν) as well as a partition or antipartition A contained in it, simply by enumerating all
partitions and antipartitions of N. In general, this is impractical because of the huge number
of partitions and antipartitions. However, if the partitions and antipartitions must come from
only a small family of relevant coalitions, it can be an efficient method. Such is the case for
highway games.

In the following we will give a refinement of Proposition 3.1 for a subclass of concave
games. A coalition S ⊆ N is said to be essential if there exists no nontrivial partition P of S
such that c(S) ≥ ∑R∈P c(R). A coalition S ⊂ N is said to be saturated if there exists no coalition
R such that S ⊂ R and c(S) ≥ c(R). A coalition S 6= ∅, N is said to be relevant if it is both
essential and saturated. We denote byRC(N, c) the set of relevant coalitions for a game (N, c),
and we define RC(N, c) = RC(N, c) ∪ {N \ {i} | i ∈ N}. If no confusion arises, we also write
RC andRC.

Lemma 3.1. Let (N, c) be a concave game such that N is essential, and such that c(N \ {i}) ≤ c(N)

for all i ∈ N. Then

(A) e(S, ν) > 0 for all S 6= ∅, N,

(B) νi > 0 for all i ∈ N,

(C) D ⊆ RC.

Proof. In order to prove (A), note that for every S ⊆ N a core element xS exists such that
xS(N \ S) = c(N \ S). Namely, since (N, c) is concave, it suffices to take any marginal vector
corresponding to a permutation where the players of N \ S precede the players of S. Then,
for each coalition S, we have xS(S) = c(N) − c(N \ S) < c(S), where the strict inequality
follows because N is essential and S 6= ∅, N. Now, define x as the average over all vectors xS

with S 6= ∅, N. Then e(S, x) > 0 for all S 6= ∅, N since e(S, x) is the average of nonnegative
numbers with one of them, e(S, xS), strictly positive. Since the minimum excess is maximized
at the nucleolus, it follows that

min{e(S, ν) | S 6= ∅, N} ≥ min{e(S, x) | S 6= ∅, N} > 0.

Hence, e(S, ν) > 0 for all S 6= ∅, N.
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Part (B) of the lemma follows because

νi = c(N)− ν(N \ {i}) ≥ c(N \ {i})− ν(N \ {i}) = e(N \ {i}, ν) > 0.

Finally, we prove (C). Let S ∈ D, and suppose |S| < |N| − 1. We prove that S ∈ RC by
contradiction. So assume that S is not essential or not saturated. If S is not essential, then
a nontrivial partition P of S exists such that c(S) ≥ ∑P∈P c(P). It follows that e(S, ν) ≥
∑P∈P e(P, ν). Together with the fact e(S, ν) > 0 for all S 6= ∅, N, this implies e(P, ν) < e(S, ν)

for all P ∈ P , which contradicts S ∈ D. If S is not saturated, then R ⊃ S exists such that
c(S) ≥ c(R). We claim that we may choose R ⊂ N. Indeed, if R = N, then we may also choose
R = N \ {i} for any i /∈ S. This follows, since c(S) ≥ c(R) = c(N) ≥ c(N \ {i}) for all i /∈ S,
and since S ⊂ N \ {i} for all i /∈ S. Now, ν > 0 implies that e(R, ν) < e(S, ν), which contradicts
S ∈ D.

The following corollary is a direct consequence of Proposition 3.1 and Lemma 3.1(C).

Corollary 3.1. Let (N, c) be a concave game such that N is essential, and such that c(N \ {i}) ≤ c(N)

for all i ∈ N. Then D ∩RC contains a partition or an antipartition of N.

3.2 The minimal excess at the nucleolus of a highway problem

In the class of highway games the relevant coalitions can be easily identified. Let (N, c) be a
highway game associated with a highway problem Γ = (N, M, C, T). Then coalition S ⊂ N is
saturated if S = {i ∈ N | min T(S) ≤ min T(i) ≤ max T(i) ≤ max T(S)}, and it is essential if
no partition {R, R′} of S exists such that T(R) ∩ T(R′) = ∅. Notice that there can be at most
1
2 |M|(|M|+ 1)− 1 relevant coalitions for a highway game, since 1

2 |M|(|M|+ 1) is the number
of possible combinations for min T(S) and max T(S), and since by definition N cannot be
relevant.

Remark 3.1. In a highway problem we say that two agents are of the same type, if they use ex-
actly the same sections. In the highway game agents of the same type correspond to symmetric
players, and the nucleolus allocation is the same for symmetric players. As a consequence, the
complexity of the algorithm presented in this paper does not depend on the number of agents,
but only on the number of types of agents. �

By Corollary 3.1, in order to compute the minimal excess at the nucleolus of (N, c), one
only has to calculate the average excess of all the partitions and antipartitions of N contained
in RC, provided that N is essential. Let us say that the highway problem Γ is decomposable
if a nontrivial partition {L, R} of N exists, such that {T(L), T(R)} forms a partition of M.
Observe that N is not essential in (N, c) if Γ is decomposable, since then c(N) = C(T(N)) =

C(T(L)) + C(T(R)) = c(L) + c(R). Conversely, if N is not essential in (N, c), then a partition
{L, R} of N exists such that c(N) = c(L) + c(R), which is only possible if L and R are such that

10



{T(L), T(R)} is a partition of M. Observe also that the coalitions L and R in the partition of N
of a decomposable highway problem must be relevant coalitions. Thus, we have the following
corollary.

Corollary 3.2. Let Γ = (N, M, C, T) be a highway problem and let (N, c) be its associated highway
game. Then D ∩RC contains a partition or an antipartition of N.

Proof. If Γ is not decomposable, then N is essential in (N, c). Further, (N, c) is monotone
according to Lemma 2.2, hence it satisfies c(N \ {i}) ≤ c(N) for all i ∈ N. In this case, the
result follows from Corollary 3.1. If Γ is decomposable, then a partition {L, R} of N exists
with L, R ∈ RC such that {T(L), T(R)} forms a partition of M, hence c(N) = c(L) + c(R).
Further, (N, c) is concave according to Lemma 2.2, hence the core is nonempty, which implies
that e(S, ν) ≥ 0 for all S ⊆ N. Since c(N) = c(L) + c(R), we must have e(L, ν) = e(R, ν) = 0.
Hence {L, R} ⊆ D ∩RC, and the result also follows.

In fact, as the next results show, for highway games we only need to consider antipartitions
inRC.

Lemma 3.2. Let Γ = (N, M, C, T) be a highway problem and let (N, c) be its associated highway
game. Then D ∩RC contains an antipartition of N.

Proof. If Γ is decomposable, then, as argued in the proof of Corollary 3.2, a partition {L, R} of
N exists with {L, R} ⊆ D ∩RC. Since {L, R} is also an antipartition, this proves the lemma in
this case. Assume further that Γ is not decomposable.

Let P be a partition of N and define its associated antipartition by AP = {Sc | S ∈ P}. We
will prove that e(AP , ν) ≤ e(P , ν). We know that

e(AP , ν) =
∑S∈AP c(S)−

(
|AP | − 1

)
c(N)

|AP |
=

∑S∈P c(Sc)−
(
|P| − 1

)
c(N)

|P| ,

e(P , ν) =
∑S∈P c(S)− c(N)

|P| .

So, we have to prove that

∑
S∈P

c(Sc)− ∑
S∈P

c(S) ≤
(
|P| − 2

)
c(N). (3)

For t ∈ M, denote by ηt the number of coalitions S ∈ P such that t ∈ T(Sc), and by ζt the
number of coalitions S ∈ P such that t ∈ T(S). Then

∑
S∈P

c(Sc)− ∑
S∈P

c(S) = ∑
t∈M

ηtC(t)− ∑
t∈M

ζtC(t) = ∑
t∈M

(ηt − ζt)C(t).

Thus, it sufficies to prove that ηt− ζt ≤ |P|− 2 for all t ∈ M. So let t ∈ M. Clearly, ηt ≤ |P|,
so we have nothing to prove if ζt ≥ 2. Assume therefore that ζt < 2. Then ζt = 1, and there
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is precisely one Ŝ ∈ P with t ∈ T(Ŝ). Since Ŝc = ∪S∈P\{Ŝ}S, it follows that t /∈ T(Ŝc), and we
deduce that ηt ≤ |P| − 1. Hence, ηt − ζt = ηt − 1 ≤ |P| − 2. So indeed, e(AP , ν) ≤ e(P , ν)

By Proposition 3.1 we know that D contains a partition or an antipartition. If D contains a
partition, say P , then D also contains the antipartition AP, since e(AP , ν) ≤ e(P , ν). We can
therefore conclude that D contains an antipartition. Since we assume that Γ is not decompos-
able, Lemma 3.1(C) applies, hence the antipartition is also contained in RC, which proves the
lemma.

Proposition 3.2. Let Γ = (N, M, C, T) be a highway problem and let (N, c) be its associated highway
game. At least one of the following statements is true.

(A) There exist L, R ∈ RC with L ∪ R = N, such that {L, R} ∪ {N \ {i} | i ∈ L ∩ R} ⊆ D.

(B) There exists S ∈ RC such that {S} ∪ {N \ {i} | i ∈ S} ⊆ D.

(C) {N \ {i} | i ∈ N} ⊆ D.

Proof. By Lemma 3.2,D∩RC contains an antipartition of N. LetA = {A1, . . . , Ak} ⊆ D∩RC
be such an antipartition. Then A` ∈ RC or |A`| = n− 1 for each ` ∈ {1, . . . , k}. Let r = |{S ∈
A | S ∈ RC}|. The cases (A), (B) and (C) correspond with r = 2, r = 1 and r = 0, respectively.
Then, we have to prove that r ≤ 2.

It will be proven by contradiction. Suppose that r ≥ 3. Then let A1, A2, A3 ∈ RC and
assume w.l.o.g. that min M ∈ T(A1) and max M ∈ T(A2). Since A1, A2 ∈ RC, it follows
that max T(A1) < max M and min T(A2) > min M, hence min M /∈ T(A1) ∩ T(A2) and
max M /∈ T(A1) ∩ T(A2).

By definition of an antipartition Ac
3 ⊆ A1 ∩ A2. Then, T(Ac

3) ⊆ T(A1) ∩ T(A2). It follows
that M = T(A3) ∪ T(Ac

3) ⊆ T(A3) ∪ (T(A1) ∩ T(A2)). Then, min M ∈ T(A3) and max M ∈
T(A3), which contradicts that A3 ∈ RC.

Notice that two coalitions L, R ∈ RC can only have the property L ∪ R = N if either L or
R contains an agent that uses section min M and if the other coalition contains an agent that
uses section max M. We can assume without loss of generality that min T(L) = min M and
max T(R) = max M. Then, onlyO(|M|2) combinations are possible in Proposition 3.2 (A). The
number of possibilities in Proposition 3.2 (B) is of the same order, hence the minimal excess at
the nucleolus of a highway game can be determined by comparing O(|M|2) different values.

Let us define,

β(L, R) =
c(L) + c(R) + ∑i∈L∩R c(N \ {i})− (|L ∩ R|+ 1)c(N)

|L ∩ R|+ 2
for L, R ∈ RC,

γ(S) =
c(S) + ∑i∈S c(N \ {i})− (|S|)c(N)

|S|+ 1
for S ∈ RC,

δ =
∑i∈N c(N \ {i})− (|N| − 1)c(N)

|N| .
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Define further
β = min{β(L, R) | L, R ∈ RC with L ∪ R = N},
γ = min{γ(S) | S ∈ RC},
λ = min{β, γ, δ}.

We then have

Corollary 3.3. Let Γ be a highway problem and let (N, c) be its associated game. Then e(D, ν) = λ.
Moreover:

(A) If λ = β = β(L, R) for L, R ∈ RC with L ∪ R = N, then νi = c(N)− c(N \ {i}) + λ for all
i ∈ L ∩ R, ν(L) = c(L)− λ, and ν(R) = c(R)− λ.

(B) If λ = γ = γ(S) for S ∈ RC, then νi = c(N) − c(N \ {i}) + λ for all i ∈ S and ν(S) =

c(S)− λ.

(C) If λ = δ, then νi = c(N)− c(N \ {i}) + λ for all i ∈ N.

Proof. It is a matter of verification to see that

β(L, R) = e({L, R} ∪ {N \ {i} | i ∈ L ∩ R}, ν) if L, R ∈ RC with L ∪ R = N,
γ(S) = e({S} ∪ {N \ {i} | i ∈ S}, ν) if S ∈ RC,
δ = e({N \ {i} | i ∈ N}, ν).

Then, by Proposition 3.2, the minimum of these numbers corresponds to an antipartition inD.
If the minimum is found in (A), then coalitions L and R are in D, hence ν(S) = c(S)− λ. Also,
N \ {i} ∈ D, hence νi = c(N) − ν(N \ {i}) = c(N) − c(N \ {i}) + λ for all i ∈ L ∩ R. The
cases (B) and (C) are proved similarly.

If λ = δ we immediately obtain the nucleolus for all agents. If λ = γ < δ, we obtain
the value of the nucleolus for agents in a proper coalition S ∈ RC. To obtain the nucleolus
for the remaining agents in Sc, it is possible to formulate a reduced highway problem with
agent set Sc, and repeat to the procedure on this smaller problem. If λ = β < min(γ, δ), we
obtain the value of the nucleolus for agents in a coalition of the form L ∩ R with L, R ∈ RC
and L ∪ R = N. To obtain the nucleolus for the remaining agents we formulate two reduced
highway problems, one for the agents in Lc, and another one for the agents in Rc.

3.3 The reduced highway problem

Let Γ = (N, M, C, T) be a highway problem. In the following, we will formulate, for Z ∈ RC
and π ∈ [0, 1

2 c(Z)], a reduced highway problem Γπ,Z = (Nπ,Z, Mπ,Z, Cπ,Z, Tπ,Z) with agent
set Nπ,Z = Zc. Sections outside T(Z) remain in the reduced problem, and sections in T(Z)
are replaced by a set of m new sections NS = {t1, t2, . . . , tm}, disjoint from M. We thus have
Mπ,Z = M \ T(Z) ∪ NS. The new sections of NS form a consecutive set, ordered t1 < t2 <
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. . . < tm, and are placed where the consecutive set of sections of T(Z) were removed. The
number m and the cost of the new sections is determined by the set of agents who, in the
original highway problem, use sections of T(Z) with positive cost, but with a total cost less
than π. We denote this set of agents by N∗.

For every i ∈ Nπ,Z, we define gi = min{π, C(T(i) ∩ T(Z))}. Then N∗ = {i ∈ Nπ,Z | 0 <

gi < π}. We distinguish between agents in N∗ whose first section belongs to T(Z) and agents
in N∗ whose last section belongs to T(Z). We define

N∗` = {i ∈ N∗ | max T(i) ∈ T(Z)}
N∗r = {i ∈ N∗ | min T(i) ∈ T(Z)}.

As the next lemma shows, the sets N∗` and N∗r together contain all agents in N∗, and the sets
do not overlap.

Lemma 3.3. The sets N∗` and N∗r form a partition of N∗.

Proof. We first prove by contradiction that N∗` ∩ N∗r = ∅. Choose i ∈ N∗ and suppose i ∈
N∗` ∩ N∗r . Then max T(i) ∈ T(Z) and min T(i) ∈ T(Z), implying T(i) ⊆ T(Z). Since Z is
saturated, it then follows that i ∈ Z, contradicting the choice i ∈ N∗ ⊆ Zc. We next prove that
N∗` ∪ N∗r = N∗. Choose i ∈ N∗ and suppose that i /∈ N∗` and i /∈ N∗r . Then min T(i) /∈ T(Z)
and max T(i) /∈ T(Z), implying T(i) ∩ T(Z) = ∅ or T(i) ⊇ T(Z). The case T(i) ∩ T(Z) = ∅
contradicts that gi > 0, and the case T(i) ⊇ T(Z) contradicts that gi < π.

Define, for all i ∈ N∗,

ςi =

gi if i ∈ N∗` ,

π − gi if i ∈ N∗r .

Now, the number m, i.e. the number of new sections, is the number of different values ςi plus
1. Let ξ ∈ Rm

++ be the vector of the m − 1 different values ςi and the number π, arranged
in strictly increasing order. Notice ξm = π, since ςi < π for all i ∈ N∗. We define the cost
function Cπ,Z by

Cπ,Z(t) =


C(t) if t ∈ M \ T(Z),

ξ1 if t = t1,

ξk − ξk−1 if t = tk with 1 < k ≤ m.

For i ∈ N∗, we denote by k(i) the unique index k ∈ {1, . . . , m− 1} such that ςi = ξk. We
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then define the mapping Tπ,Z : Nπ,Z → 2Mπ,Z by

Tπ,Z(i) =



T(i) if gi = 0,(
T(i) \ T(Z)

)
∪ NS if gi = π(

T(i) \ T(Z)
)
∪ {t1, . . . , tk(i)} if i ∈ N∗` ,(

T(i) \ T(Z)
)
∪ {tk(i)+1, . . . , tm} if i ∈ N∗r ,

for all i ∈ Nπ,Z. Notice that the definition ensures that, for each i ∈ Nπ,Z, Tπ,Z(i) contains
a consecutive set of sections of Mπ,Z. Therefore, Γπ,Z = (Nπ,Z, Mπ,Z, Cπ,Z, Tπ,Z) is a valid
highway problem.

For the following lemma, the choice π ≤ 1
2 c(Z) is needed.

Lemma 3.4. T(N∗` ) ∩ T(N∗r ) = ∅ and T(N∗` ) ∪ T(N∗r ) does not contain every section of T(Z).

Proof. We first prove that T(i) ∩ T(j) = ∅ for all i ∈ N∗` and j ∈ N∗r . Suppose to the contrary
that i ∈ N∗` and j ∈ N∗r exist with T(i) ∩ T(j) 6= ∅. Then T(Z) ⊆ T(i) ∪ T(j), and we obtain

gi + gj = C(T(i) ∩ T(Z)) + C(T(j) ∩ T(Z)) ≥ C(T(Z)) = c(Z) ≥ 2π,

which contradicts that gi < π and gj < π.
So we have indeed T(i) ∩ T(j) = ∅ for all i ∈ N∗` and j ∈ N∗r . The claim T(N∗` ) ∩ T(N∗r ) =

∅ immediately follows. It also follows that

C(T(Z) ∩ T(N∗)) = max{gi | i ∈ N∗` }+ max{gi | i ∈ N∗r } < 2π ≤ C(T(Z)).

The strict inequality implies T(Z) 6⊆ T(N∗` ) ∪ T(N∗r ).

Corollary 3.4. The number of sections of the reduced highway problem Γπ,Z does not exceed the number
of sections of Γ.

Proof. Note that the number of new sections in the reduced highway problem is bounded
by 1 + |T(N∗) ∩ T(Z)|. By Lemma 3.4, T(N∗) ∩ T(Z) is a proper subset of T(Z), hence 1 +

|T(N∗)∩T(Z)| ≤ |T(Z))|. Thus, the number of new sections is at most the number of replaced
sections, and the claim of the corollary follows.

Proposition 3.3. Let Γ = (N, M, C, T) be a highway problem with associated highway game (N, c).
Let further Z ∈ RC and π ∈ [0, 1

2 c(Z)]. Then, the characteristic function cπ,Z of the highway game
(Nπ,Z, cπ,Z) associated with the reduced highway problem Γπ,Z is given by

cπ,Z(S) = min{c(S), π + C(T(S) \ T(Z))}

for all S ⊆ N.
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Proof. Let S ⊆ Nπ,Z.
Assume first that (i) gi < π for all i ∈ S and that (ii) gi + gj < π for all i ∈ S ∩ N∗` and

j ∈ S ∩ N∗r . We then claim that at least one of the sections in NS is not used by any of the
agents of S in the reduced highway problem. This is obvious if S ∩ N∗` = ∅, since then t1 is
not used, and it is also obvious if S ∩ N∗r = ∅, since then tm is not used. If S ∩ N∗` 6= ∅ and
S∩ N∗r 6= ∅, then ξk(i) = gi < π− gj = ξk(j), hence k(i) < k(j), for all i ∈ S∩ N∗` , j ∈ S∩ N∗r . It
follows that section tk, where k = min{k(j) | j ∈ S∩ N∗r }, is not used by any of the agents in S.
Then, the agent set S can be partitioned into {S`, Sr}, where S` consists of the agents that only
use sections smaller than the unused section, and where Sr consists of the agents that only
use sections larger than the unused section. Note then that also {Tπ,Z(S`), Tπ,Z(Sr)} forms a
partition of Tπ,Z(S). Moreover, T(S`)∩ T(Sr) = ∅ by Lemma 3.4, implying that {T(S`), T(Sr)}
forms a partition of T(S). Therefore, conditions (i) and (ii) imply that

cπ,Z(S) = Cπ,Z(Tπ,Z(S)) = Cπ,Z(Tπ,Z(S`)) + Cπ,Z(Tπ,Z(Sr)) =

C(T(S`)) + C(T(Sr)) = C(T(S)) = c(S).

Conditions (i) and (ii) also imply that

C(T(S) ∩ T(Z)) = max{gi | i ∈ S`}+ max{gi | i ∈ Sr} < π,

hence c(S) = C(T(S) ∩ T(Z)) + C(T(S) \ T(Z)) < π + C(T(S) \ T(Z)). This proves that the
claim of the proposition holds if conditions (i) and (ii) hold.

Now assume that condition (i) does not hold, i.e. assume that i ∈ S exists with gi = π.
Then, in the reduced highway problem, agent i uses all new sections, hence NS ⊆ Tπ,Z(S). It
follows that Tπ,Z(S) = NS ∪ T(S) \ T(Z) and that cπ,Z(S) = π + C(T(S) \ T(Z)). Moreover,
c(S) = C(T(S) ∩ T(Z)) + C(T(S) \ T(Z)) ≥ π + C(T(S) \ T(Z)), which proves that the claim
of the proposition holds in this case as well.

Finally assume that condition (ii) does not hold, i.e. assume that i ∈ S ∩ N∗` and j ∈ S ∩
N∗r exist with gi + gj ≥ π. Then ξk(i) = gi ≥ π − gj = ξk(j), hence k(i) ≥ k(j). Since, in
the reduced problem, i uses the sections t1, . . . , tk(i) and j uses tk(j)+1, . . . , tm, it follows that
NS ⊆ Tπ,Z(i) ∪ Tπ,Z(j). Then NS ⊆ Tπ,Z(S), and Tπ,Z(S) = NS ∪ T(S) \ T(Z). It follows
that cπ,Z(S) = π + C(T(S) \ T(Z)). Moreover, c(S) = C(T(S) ∩ T(Z)) + C(T(S) \ T(Z)) ≥
gi + gj + C(T(S) \ T(Z)) ≥ π + C(T(S) \ T(Z)). This proves the claim of the proposition for
this final case.

The next proposition provides a formula for the Davis-Maschler reduced game. In the
following we denote by (Qc, cx,Q) the Davis-Maschler reduced game of a game (N, c), where
Q ⊆ N is the player set that left the game, and where x is an allocation for (N, c).

Proposition 3.4. Let (N, M, C, T) be a highway problem, let x be a core element of the associated
highway game (N, c), and let Z ∈ D(x) := {S ⊂ N | e(S, x) ≤ e(T, x) for all T ⊂ N, S, T 6= ∅}.
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Then, the characteristic function cx,Z of the Davis-Maschler reduced game is given by

cx,Z(S) = min{c(S), π + C(T(S) \ T(Z))} for all S ⊆ N,

where π = c(Z)− x(Z).

Proof. Since (N, c) is a concave game, x is a core element of the game, and Z ∈ D(x), Lemma 5.7
in Maschler et al. (1972), restated for concave games, says that,

cx,Z(S) = min{c(S), c(S ∪ Z)− x(Z)}.

Moreover

c(S ∪ Z)− x(Z) = c(Z)− x(Z) + c(S ∪ Z)− c(Z) = c(Z)− x(Z) + C(T(S) \ T(Z)).

The proposition follows.

The formulas for the reduced highway game and the Davis-Maschler reduced game look
the same, but the conditions under which they hold are different. The next corollary shows that
both conditions are satisfied if the reduction is with respect to the nucleolus ν and a coalition
in D ∩RC.

Corollary 3.5. Let (N, M, C, T) be a highway problem with associated game (N, c), and let Z ∈
D ∩RC. Then cν,Z = cπ,Z, where π = c(Z)− ν(Z).

Proof. Since ν is a core element and Z ∈ D, Proposition 3.4 applies. For Proposition 3.3, the
condition Z ∈ RC is satisfied, but it remains to verify that π ∈ [0, 1

2 c(Z)].
Since Z ∈ D, the results from the Section 3.2 show that we have one of the following three

possibilities: π = γ(Z), π = β(Z, R), or π = β(L, Z).
If π = γ(Z), then

π =
c(Z) + ∑i∈Z c(N \ {i})− |Z|c(N)

1 + |Z| ≤ c(Z)
2

.

If π = β(Z, R), then

π =
c(Z) + c(R) + ∑i∈Z∩R c(N \ {i})− (1 + |Z ∩ R|)c(N)

2 + |Z ∩ R| ≤ c(Z) + c(R)− c(N)

2
≤ 1

2
c(Z).

The case π = β(L, Z) is similar to the case π = β(R, Z). Since both Propositions 3.4 and 3.3
apply, we have indeed cν,Z = cπ,Z.

3.4 Algorithm for computing the nucleolus of a highway game

The results from sections 3.2 and 3.3 suggest a recursive approach for calculating the nucleo-
lus of a highway game. We present the algorithm in the form of a function ν = nucleolus(Γ),
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where the function nucleolus takes its input from an arbitrary highway problem Γ and deliv-
ers its output in ν, the nucleolus of the associated highway game. In the algorithm, we use the
convention min ∅ = ∞.

function ν = nucleolus(Γ);
β = min{β(L, R) | L, R ∈ RC and L ∪ R = N};
γ := min{γ(S) | S ∈ RC};
λ := min(β, γ, δ);
if λ = ∞ then

ν := c(N);

else if λ = δ then

νi := c(N)− c(N \ {i}) + λ for all i ∈ N;

else if λ = γ then

choose S ∈ RC such that λ = γ(S);
νi := c(N)− c(N \ {i}) + λ for all i ∈ S;
νN\S := nucleolus(Γλ,S);

else if λ = β then

choose L, R ∈ RC such that λ = β(L, R) and L ∪ R = N;

νi := c(N)− c(N \ {i}) + λ for all i ∈ L ∩ R;
νN\L := nucleolus(Γλ,L);
νN\R := nucleolus(Γλ,R);

end;

end;

The correctness of the algorithm relies on results established in the Corollaries 3.3 and 3.5.

Corollary 3.6. The function nucleolus calculates the nucleolus of any highway problem in finite time.

Proof. The proof is by induction on the cardinality of the agent set of the highway problem.
If there is only one agent, then β = γ = δ = ∞. Hence λ = ∞, and the function imme-

diately returns the trivial correct answer. Now let Γ = (N, M, C, T) be a highway problem
with |N| = n > 1 and assume that the function nucleolus returns the nucleolus in finite time,
whenever it is given an input highway problem with less than n agents. Then λ ≤ δ < ∞, so
we need to distinguish three cases.

Case 1: λ = δ. By Corollary 3.3(C), we have νi = c(N)− c(N \ {i}) + λ for all i ∈ N, which
shows that the function indeed returns the nucleolus.

Case 2: λ = γ. By Corollary 3.3(B), we have νi = c(N)− c(N \ {i}) + λ for i ∈ S, which
shows that the function returns the nucleolus for the players in S. For the players in N \ S, the
function calls itself with the reduced highway problem Γλ,S as input. By induction, this returns
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ν(Γλ,S), the nucleolus of the reduced highway problem, in finite time. By Corollary 3.5, this is
indeed the nucleolus for the players in N \ S.

Case 3: λ = β. By Corollary 3.3(A), we have νi = c(N)− c(N \ {i}) + λ for i ∈ L ∩ R, so
the function returns the nucleolus for the players in L ∩ R. For the players in N \ L and N \ R,
there are a recursive calls of the function with the reduced highway problems Γλ,L and Γλ,R as
input respectively. The argument that this returns the nucleolus for these players is similar to
Case 2.

For the following proposition we assume that the function nucleolus calculates the nucle-
olus payoff for each type of agent, not for each individual agent. This will make the complexity
independent of the number of agents.

Proposition 3.5. The function nucleolus runs in O(m + m3k + k2) time, where m is the number of
sections of the input highway problem, and k is the number of relevant coalitions.

Proof. The computation of one number β(L, R) can be done in O(m) time: it requires one
division and at most one addition or subtraction per section. Since there are O(m2) possible
combinations for L and R, the computation of all numbers β(L, R) can certainly be done in
O(m3) time. Simililarly, the computation of each number γ(S) takes O(m) time, and since
there are k possibilities for S, the computation of all numbers γ(S) can be done inO(mk) time.
Other calculations in the body of the function, the explicit ones like the computation of δ,
and also the implicit ones like calculating the data of a reduced game, are also easily seen to
require at most O(m3 + mk) work. Thus, the function runs in O(m3 + mk) time plus the time
needed for the recursive calls. This means we can choose K such that the number of numerical
operations, not in the recursive calls, is bounded by K(m3 + mk). We now prove by induction
on k that the number of numerical operations in the function nucleolus, including operations
inside the recursive calls, is bounded by K(m + m3k + mk2).

If k = 0, then β = γ = ∞. Then no recursive calls are made, no numbers β(L, R) and γ(S)
are computed, and the number of numerical operations is linear in m, say it is bounded by
Cm. We may assume without loss of generality that K ≥ C, and the claim that the number of
operations is bounded by K(m + m3k + mk2) follows. Now, let k > 0 and assume the claim is
true for all integers smaller than k. If λ = δ, no recursive call is made, and the claim is trivially
true. So assume λ = β or λ = γ.

If λ = γ = γ(S), there will be one recursive call of the function. Let mS, kS denote the
number of sections and relevant coalitions respectively of the reduced highway problem Γλ,S.
Since a relevant coalition in Γ can correspond to at most one relevant coalition in Γλ,S and since
S itself does not correspond to a relevant coalition in the reduced problem, we have kS ≤ k− 1.
Also mS ≤ m by Corollary 3.4. By induction, the amount of numerical operations in the
recursive call is bounded by K(mS + m3

SkS + mSk2
S). Then, for the total number of operations,
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we have an upper bound of

K(mS + m3
SkS + mSk2

S) + K(m3 + mk) ≤
Km + Km3(k− 1) + Km(k− 1)2 + K(m3 + mk) =

K(m + m3k + mk2)− Km(k− 1) ≤
K(m + m3k + mk2).

If λ = β = β(L, R), there will be two recursive calls of the function. Notice that this can only
be the case if k > 1. Let mL, mR denote the number of sections and let kL, kR denote the number
of relevant coalitions of the two reduced highway problems Γλ,L and Γλ,R respectively. Since
(N \ L)∩ (N \R) = ∅, a relevant coalition in Γ can correspond to at most one relevant coalition
in either Γλ,L or Γλ,R. This shows that kL + kR ≤ k, but we wish to prove kL + kR ≤ k− 1. If
L ∩ R = ∅, then coalitions L and R are not relevant in either of the reduced problems, so we
even have kL + kR ≤ k− 2. If L ∩ R 6= ∅, then L ∩ R is relevant in Γ, but not in either of the
reduced problems, so also in this case we have kL + kR ≤ k− 1. We further have mL, mR ≤ m
by Corollary 3.4. By induction, the amount of numerical operations in the two recursive calls
is bounded by K(mL + m3

LkL + mLk2
L) and K(mR + m3

RkR + mRk2
R) respectively. Then, for the

total number of operations, we have an upper bound of

K(mL + m3
LkL + mLk2

L) + K(mR + m3
RkR + mRk2

R) + K(m3 + mk) ≤
K(m + m3kL + mk2

L) + K(m + m3kR + mk2
R) + K(m3 + mk) =

Km3(kL + kR) + Km(k2
L + k2

R) + K(m3 + mk + 2m) ≤
Km3(k− 1) + Km(k− 1)2 + K(m3 + mk + 2m) =

K(m + m3k + mk2)− Km(k− 2) ≤
K(m + m3k + mk2),

where the last inequality follows, since k > 1.

Since the number of relevant coalitions is bounded by 1
2 m(m + 1) for a highway problem

with m sections, it is also true that the complexity is at most O(m5). If Proposition 3.5 is
applied to the subclass of airport games, the derived complexity bound becomes O(m4) by
substituting k = O(m) relevant coalitions. However, it is easy to derive a sharper complexity
bound ofO(m3) for the function nucleolus in the case of airport games, by observing that the
numbers β(L, R) need not be computed. This is the same complexity bound as the procedure
for airport games, described by Littlechild (1974).

4 A practical application: AP68 highway in Spain

To conclude, we applied the results of this paper to the AP68 highway located in the north of
Spain. It connects Bilbao to Zaragoza and it has 23 entry/exit points along its route. The total
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length of the highway is 295 km. Figure 2 shows its route.

Bilbao Zaragoza1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Arrigorriaga

Areta

Llodio

Ziorraga

Altube

Subijana

E-AP1

M. de Ebro

Haro

Cenicero

Navarrete

Logroño

Agoncillo

Lodosa

Calahorra

Alfaro

E-AP15

Tudela

Gallur

A-272

A-275

Figure 2: Route of the AP68 highway in Spain.

AP68 is a toll highway. The concessionaire firm is Autopistas Vasco-Aragonesas. There exist
three kinds of rates according to the different classes of vehicles: light vehicles (cars, motorbikes
and delivery cars), light trucks and heavy trucks. For simplicity, we restricted to the light vehicles
class. Table 2 provides the official rates applied in 2007.2 The total number of journeys using
each part of the highway during 2007 are given in Table 3. Take into account that the direction
is not important in our model and that the numbers in Table 3 represent the number of vehicles
using a particular part of the highway in either direction. The bold numbers in the first row
and first column of Table 2, Table 3, Table 5 and Table 6 represent the entrance/exit points.
Their correspondences with cities are given in Table 1. There are no exits at points 5, 15 and
22, and there is no entrance at point 3. At point 2 there is an entrance, but the machine that
handles the vehicles from point 1 is located at point 2, so it does not make any difference
whether a vehicle enters at 1 or at 2. To estimate the costs, we assumed that the cost of each
section is the total amount that the highway concessionaire firm collected in that section (we
have considered other alternatives as well, but we have included only this case for illustrating
purposes). These costs are given in Table 4. These data are the ingredients for defining the
highway problem and it associated highway game.

1 Bilbao 6 Altube 11 Cenicero 16 Calahorra 21 A-272
2 Arrigorriaga 7 Subijana 12 Navarrete 17 Alfaro 22 A-275
3 Areta 8 E-AP1 13 Logroño 18 E-AP15 23 Zaragoza
4 Llodio 9 Miranda de Ebro 14 Agoncillo 19 Tudela
5 Ziorraga 10 Haro 15 Lodosa 20 Gallur

Table 1: Legend for Table 2, Table 3, Table 5, and Table 6.

It can be observed that the rates according to the Shapley value are close to the official
rates. This is actually no surprise, as the cost of a section was estimated by the collected toll
fee at that section, and the Shapley value distributes this cost among the users of that section.
So although the methods of aggregating costs and distributing costs are different, they are
similar. The nucleolus gives almost a flat rate. Only users of the highway near Bilbao have
reduced rates, but other users all pay the same toll. The reduced rates near Bilbao can be
explained by the fact that 57% of the journeys occur in the aforementioned part.

2The authors would like to thank the AP68 managers, particularly to Domingo Sobrón, for having provided
all data that the authors asked for.
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Recall that, in our game model, the cost of a section is interpreted as a cost independent
of traffic. Then it may make sense to charge for the use of the entire highway, independent
of traveled sections, as traveling does not incur costs. The nucleolus behaves somewhat in
this way, but makes exceptions for sections with exceptionally high or low cost and high or
low usage. The Shapley value however takes into account the number of traveled sections,
charging as if damage was caused to each traveled section. The logic of the nucleolus appears
more in line with the interpretation of the game model.

The official rates are based on maintenance costs that are not independent of traffic. There-
fore, these should not be compared to the nucleolus.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0.00 0.65 1.55 1.55 - 4.15 6.05 7.55 8.15 9.10 10.70 11.25 11.95 12.95 - 15.15 17.05 17.45 18.35 20.75 22.80 - 24.40
2 0.00 1.55 1.55 - 4.15 6.05 7.55 8.15 9.10 10.70 11.25 11.95 12.95 - 15.15 17.05 17.45 18.35 20.75 22.80 - 24.40
3 0.00 - - - - - - - - - - - - - - - - - - - -
4 0.00 - 2.75 4.60 6.10 6.75 7.70 9.30 9.85 10.55 11.50 - 13.75 15.65 16.05 16.90 19.35 21.35 - 23.00
5 0.00 1.00 2.85 4.35 5.00 5.95 7.50 8.10 8.80 9.75 - 11.95 13.85 14.30 15.15 17.60 19.60 - 21.25
6 0.00 2.15 3.65 4.30 5.20 6.80 7.35 8.05 9.05 - 11.25 13.15 13.60 14.45 16.90 18.90 - 20.50
7 0.00 1.60 2.25 3.20 4.75 5.35 6.05 7.00 - 9.20 11.10 11.55 12.40 14.85 16.85 - 18.50
8 0.00 0.55 1.50 3.05 3.65 4.35 5.30 - 7.50 9.45 9.85 10.70 13.15 15.15 - 16.80
9 0.00 1.20 2.75 3.35 4.05 5.00 - 7.20 9.10 9.55 10.40 12.85 14.85 - 16.50

10 0.00 1.70 2.25 2.95 3.95 - 6.15 8.05 8.50 9.35 11.80 13.80 - 15.40
11 0.00 0.70 1.40 2.40 - 4.60 6.50 6.90 7.75 10.20 12.20 - 13.85
12 0.00 0.80 1.80 - 4.00 5.90 6.35 7.20 9.65 11.65 - 13.25
13 0.00 1.25 - 3.45 5.35 5.80 6.65 9.10 11.10 - 12.75
14 0.00 - 2.30 4.20 4.65 5.50 7.95 9.95 - 11.55
15 0.00 0.85 2.75 3.15 4.05 6.45 8.45 - 10.10
16 0.00 2.00 2.45 3.30 5.75 7.75 - 9.35
17 0.00 0.60 1.50 3.90 5.90 - 7.55
18 0.00 1.05 3.50 5.50 - 7.15
19 0.00 2.60 4.60 - 6.25
20 0.00 2.15 - 3.80
21 0.00 - 2.05
22 0.00 1.75
23 0.00

Table 2: Official rates in euros for light vehicles applied in the AP68 highway during 2007.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0 1792 3376 4851 0 13061 181 6855 561 1114 222 278 1072 128 0 241 101 6 144 130 103 0 1394
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 929 11 139 28 27 5 5 24 4 0 4 4 0 4 3 2 0 24
5 0 316 11 87 18 20 4 6 15 2 0 5 2 0 2 4 2 0 21
6 0 19 63 18 15 4 4 13 2 0 4 2 0 2 2 1 0 20
7 0 70 30 20 4 4 10 2 0 3 1 0 1 1 1 0 13
8 0 107 297 97 115 697 66 0 120 47 5 66 53 75 0 1222
9 0 442 56 145 390 37 0 53 21 1 29 39 19 0 223

10 0 76 207 862 44 0 94 33 2 37 21 25 0 347
11 0 24 151 35 0 35 14 0 12 8 7 0 84
12 0 110 187 0 101 28 2 25 18 17 0 191
13 0 969 0 1073 227 5 143 74 67 0 737
14 0 0 758 147 1 89 40 38 0 339
15 0 279 64 1 70 20 13 0 105
16 0 86 16 181 55 57 0 449
17 0 29 44 29 41 0 333
18 0 937 392 322 0 2869
19 0 77 168 0 1095
20 0 306 0 1869
21 0 0 39
22 0 1297
23 0

Table 3: Number of vehicles using AP68 highway in the year 2007.

1 − 2 20385,79 6 − 7 24325,86 11 − 12 6618,932 16 − 17 15951,27 21 − 22 2742,027
2 − 3 23065,18 7 − 8 20136,34 12 − 13 6512,166 17 − 18 4009,55 22 − 23 20549,93
3 − 4 6736,976 8 − 9 3120,606 13 − 14 10597,76 18 − 19 9667,746
4 − 5 49815,77 9 − 10 12023,41 14 − 15 14476,77 19 − 20 27460,07
5 − 6 18021,02 10 − 11 16455,22 15 − 16 8045,568 20 − 21 23431,98

Table 4: Cost of each section of AP68 in the year 2007.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0.00 4.85 4.85 4.85 - 4.85 5.80 5.80 5.80 6.21 6.31 6.31 6.31 6.31 - 6.31 6.31 6.31 6.31 6.31 6.31 - 6.31
2 0.00 4.85 4.85 - 4.85 5.80 5.80 5.80 6.21 6.31 6.31 6.31 6.31 - 6.31 6.31 6.31 6.31 6.31 6.31 - 6.31
3 0.00 - - - - - - - - - - - - - - - - - - - -
4 0.00 - 4.85 5.80 5.80 5.80 6.21 6.31 6.31 6.31 6.31 - 6.31 6.31 6.31 6.31 6.31 6.31 - 6.31
5 0.00 4.85 5.80 5.80 5.80 6.21 6.31 6.31 6.31 6.31 - 6.31 6.31 6.31 6.31 6.31 6.31 - 6.31
6 0.00 5.80 5.80 5.80 6.21 6.31 6.31 6.31 6.31 - 6.31 6.31 6.31 6.31 6.31 6.31 - 6.31
7 0.00 5.80 5.80 6.21 6.31 6.31 6.31 6.31 - 6.31 6.31 6.31 6.31 6.31 6.31 - 6.31
8 0.00 5.80 6.21 6.31 6.31 6.31 6.31 - 6.31 6.31 6.31 6.31 6.31 6.31 - 6.31
9 0.00 6.21 6.31 6.31 6.31 6.31 - 6.31 6.31 6.31 6.31 6.31 6.31 - 6.31

10 0.00 6.31 6.31 6.31 6.31 - 6.31 6.31 6.31 6.31 6.31 6.31 - 6.31
11 0.00 6.31 6.31 6.31 - 6.31 6.31 6.31 6.31 6.31 6.31 - 6.31
12 0.00 6.31 6.31 - 6.31 6.31 6.31 6.31 6.31 6.31 - 6.31
13 0.00 6.31 - 6.31 6.31 6.31 6.31 6.31 6.31 - 6.31
14 0.00 - 6.31 6.31 6.31 6.31 6.31 6.31 - 6.31
15 0.00 6.31 6.31 6.31 6.31 6.31 6.31 - 6.31
16 0.00 6.31 6.31 6.31 6.31 6.31 - 6.31
17 0.00 6.31 6.31 6.31 6.31 - 6.31
18 0.00 6.31 6.31 6.31 - 6.31
19 0.00 6.31 6.31 - 6.31
20 0.00 6.31 - 6.31
21 0.00 - 6.31
22 0.00 6.31
23 0.00

Table 5: Rates in euros for light vehicles using the nucleolus.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0.00 0.57 1.25 1.48 - 3.99 5.84 7.37 7.73 8.98 10.74 11.45 12.16 13.32 - 15.76 17.83 18.38 19.19 21.60 23.46 - 25.33
2 0.00 0.68 0.90 - 3.42 5.27 6.80 7.15 8.41 10.16 10.88 11.59 12.75 - 15.18 17.26 17.80 18.62 21.03 22.89 - 24.75
3 0.00 - - - - - - - - - - - - - - - - - - - -
4 0.00 - 2.52 4.36 5.90 6.25 7.51 9.26 9.97 10.68 11.85 - 14.28 16.36 16.90 17.72 20.13 21.99 - 23.85
5 0.00 0.66 2.51 4.04 4.39 5.65 7.40 8.12 8.83 9.99 - 12.42 14.50 15.04 15.86 18.27 20.13 - 21.99
6 0.00 1.85 3.38 3.73 4.99 6.74 7.46 8.17 9.33 - 11.76 13.84 14.38 15.20 17.61 19.47 - 21.33
7 0.00 1.53 1.89 3.14 4.90 5.61 6.32 7.48 - 9.92 11.99 12.54 13.35 15.76 17.62 - 19.49
8 0.00 0.35 1.61 3.36 4.08 4.79 5.95 - 8.38 10.46 11.00 11.82 14.23 16.09 - 17.95
9 0.00 1.26 3.01 3.72 4.43 5.60 - 8.03 10.11 10.65 11.47 13.88 15.74 - 17.60

10 0.00 1.75 2.47 3.18 4.34 - 6.77 8.85 9.39 10.21 12.62 14.48 - 16.34
11 0.00 0.71 1.42 2.58 - 5.02 7.10 7.64 8.46 10.87 12.73 - 14.59
12 0.00 0.71 1.87 - 4.31 6.38 6.93 7.74 10.15 12.01 - 13.88
13 0.00 1.16 - 3.60 5.67 6.22 7.03 9.44 11.30 - 13.17
14 0.00 - 2.44 4.51 5.05 5.87 8.28 10.14 - 12.00
15 0.00 0.84 2.91 3.46 4.27 6.68 8.54 - 10.41
16 0.00 2.08 2.62 3.44 5.85 7.71 - 9.57
17 0.00 0.54 1.36 3.77 5.63 - 7.49
18 0.00 0.82 3.23 5.09 - 6.95
19 0.00 2.41 4.27 - 6.13
20 0.00 1.86 - 3.72
21 0.00 - 1.86
22 0.00 1.62
23 0.00

Table 6: Rates in euros for light vehicles using the Shapley value.
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