Show simple item record

dc.contributor.authorRoca Pardiñas, Javier 
dc.contributor.authorOrdóñez Galán, Celestino 
dc.contributor.authorCotos Yáñez, Tomas Raimundo 
dc.contributor.authorPérez Álvarez, Rubén
dc.date.accessioned2019-01-15T11:18:05Z
dc.date.available2019-01-15T11:18:05Z
dc.date.issued2016-09-05
dc.identifier.citationInternational Journal of Geographical Information Science, 31(4): 676-693 (2016)spa
dc.identifier.issn13658816
dc.identifier.issn13623087
dc.identifier.urihttp://hdl.handle.net/11093/1145
dc.description.abstractWe propose a method to evaluate the existence of spatial variability in the covariance structure in a geographically weighted principal components analysis (GWPCA). The method, that is extensive to locally weighted principal components analysis, is based on performing a statistical hypothesis test using the eigenvectors of the PCA scores covariance matrix. The application of the method to simulated data shows that it has a greater statistical power than the current statistical test that uses the eigenvalues of the raw data covariance matrix. Finally, the method was applied to a real problem whose objective is to find spatial distribution patterns in a set of soil pollutants. The results show the utility of GWPCA versus PCA.spa
dc.description.sponsorshipFundación para el Fomento en Asturias de la Investigación Científica | Ref. FC-15-GRUPIN14-033spa
dc.description.sponsorshipMinisterio de Economía y Competitividad | Ref. MTM2014-55699-Pspa
dc.language.isoengspa
dc.publisherInternational Journal of Geographical Information Sciencespa
dc.titleTesting spatial heterogeneity in geographically weighted principal components analysisspa
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1080/13658816.2016.1224886
dc.identifier.editorhttp://dx.doi.org/10.1080/13658816.2016.1224886spa
dc.publisher.departamentoEstatística e investigación operativaspa
dc.publisher.grupoinvestigacionInferencia Estatística, Decisión e Investigación Operativaspa
dc.date.updated2019-01-15T11:05:34Z
dc.computerCitationpub_title=International Journal of Geographical Information Science|volume=31|journal_number=4|start_pag=676|end_pag=693spa
dc.references“This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Geographical Information Science on 05 Sep 2016, available online: http://www.tandfonline.com/10.1080/13658816.2016.1224886.”spa


Files in this item

[PDF]

    Show simple item record