dc.contributor.author | Roca Pardiñas, Javier | |
dc.contributor.author | Ordóñez Galán, Celestino | |
dc.contributor.author | Cotos Yáñez, Tomas Raimundo | |
dc.contributor.author | Pérez Álvarez, Rubén | |
dc.date.accessioned | 2019-01-15T11:18:05Z | |
dc.date.available | 2019-01-15T11:18:05Z | |
dc.date.issued | 2016-09-05 | |
dc.identifier.citation | International Journal of Geographical Information Science, 31(4): 676-693 (2016) | spa |
dc.identifier.issn | 13658816 | |
dc.identifier.issn | 13623087 | |
dc.identifier.uri | http://hdl.handle.net/11093/1145 | |
dc.description.abstract | We propose a method to evaluate the existence of spatial variability in the covariance structure in a geographically weighted principal components analysis (GWPCA). The method, that is extensive to locally weighted principal components analysis, is based on performing a statistical hypothesis test using the eigenvectors of the PCA scores covariance matrix. The application of the method to simulated data shows that it has a greater statistical power than the current statistical test that uses the eigenvalues of the raw data covariance matrix. Finally, the method was applied to a real problem whose objective is to find spatial distribution patterns in a set of soil pollutants. The results show the utility of GWPCA versus PCA. | spa |
dc.description.sponsorship | Fundación para el Fomento en Asturias de la Investigación Científica | Ref. FC-15-GRUPIN14-033 | spa |
dc.description.sponsorship | Ministerio de Economía y Competitividad | Ref. MTM2014-55699-P | spa |
dc.language.iso | eng | spa |
dc.publisher | International Journal of Geographical Information Science | spa |
dc.title | Testing spatial heterogeneity in geographically weighted principal components analysis | spa |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.identifier.doi | 10.1080/13658816.2016.1224886 | |
dc.identifier.editor | http://dx.doi.org/10.1080/13658816.2016.1224886 | spa |
dc.publisher.departamento | Estatística e investigación operativa | spa |
dc.publisher.grupoinvestigacion | Inferencia Estatística, Decisión e Investigación Operativa | spa |
dc.date.updated | 2019-01-15T11:05:34Z | |
dc.computerCitation | pub_title=International Journal of Geographical Information Science|volume=31|journal_number=4|start_pag=676|end_pag=693 | spa |
dc.references | “This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Geographical Information Science on 05 Sep 2016, available online: http://www.tandfonline.com/10.1080/13658816.2016.1224886.” | spa |