Show simple item record

dc.contributor.authorLiang, Han-Ying
dc.contributor.authorIglesias Pérez, Maria Carmen 
dc.date.accessioned2019-03-13T12:38:52Z
dc.date.available2019-08-09T23:15:06Z
dc.date.issued2018-08-09
dc.identifier.citationStatistics, 52(6): 1249-1269 (2018)spa
dc.identifier.issn02331888
dc.identifier.issn10294910
dc.identifier.urihttp://hdl.handle.net/11093/1216
dc.description.abstractBy applying the empirical likelihood method, we construct a new weighted estimator of the conditional mean function for a left-truncated and right-censored model. Assuming that the observations form a stationary α-mixing sequence, we derive weak convergence with a certain rate and prove asymptotic normality of the weighted estimator. The asymptotic normality shows that the weighted estimator preserves the bias, variance, and, more importantly, automatic good boundary behavior of a local linear estimator of the conditional mean function. Also, a Berry-Esseen type bound for the weighted estimator is established. A simulation study is conducted to study the finite sample behavior of the new estimator and a real data application is provided.spa
dc.description.sponsorshipNational Natural Science Foundation of China | Ref. 11671299spa
dc.description.sponsorshipSpanish Ministry of Economy and Competitiveness | Ref. MTM2014-55966-Pspa
dc.language.isoengspa
dc.publisherStatisticsspa
dc.titleWeighted estimation of conditional mean function with truncated, censored and dependent dataspa
dc.typearticlespa
dc.rights.accessRightsembargoedAccessspa
dc.identifier.doi10.1080/02331888.2018.1506923
dc.identifier.editorhttps://www.tandfonline.com/doi/full/10.1080/02331888.2018.1506923spa
dc.publisher.departamentoEstatística e investigación operativaspa
dc.publisher.grupoinvestigacionInferencia Estatística, Decisión e Investigación Operativaspa
dc.subject.unesco1209 Estadísticaspa
dc.date.embargoEndDate2019-08-09spa
dc.date.updated2019-03-06T14:40:36Z
dc.computerCitationpub_title=Statistics|volume=52|journal_number=6|start_pag=1249|end_pag=1269spa
dc.references“This is an Accepted Manuscript of an article published by Taylor & Francis in Statistics on 9 August 2018, available online: http://www.tandfonline.com/10.1080/02331888.2018.1506923.”spa


Files in this item

[PDF]

    Show simple item record