BibliotecaPortal de investigación
es | gl
  • Inicio
  • Contact us
  • Give feedback
  • Help
    • About Investigo
    • Search and Find
    • Submit
    • Intellectual Property
    • Open Access Policy
  • Links
    • Sherpa / Romeo
    • Dulcinea
    • OpenDOAR
    • Dialnet Plus
    • ORCID
    • Creative Commons
    • UNESCO Nomenclature
    • español
    • English
    • Gallegan
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of InvestigoAuthorsTitles Materias Unesco Research GroupsType of ContentsJournal TitlesThis CollectionAuthorsTitlesUNESCO SubjectsResearch GroupsType of ContentsJournal Titles

Depositar

Pasos para depositarSolicitar permiso a una editorialRelated guides

Statistics

View Usage Statistics

Segmentation and classification of road markings using MLS data

Soilán Rodríguez, MarioAutor UVIGO; Riveiro Rodríguez, BelénAutor UVIGO; Martínez Sánchez, JoaquínAutor UVIGO; Arias Sánchez, PedroAutor UVIGO
DATE: 2017-01
UNIVERSAL IDENTIFIER: http://hdl.handle.net/11093/1336
EDITED VERSION: https://linkinghub.elsevier.com/retrieve/pii/S0924271616303173
UNESCO SUBJECT: 3305.06 Ingeniería Civil
DOCUMENT TYPE: article

ABSTRACT

Traffic signs are one of the most important safety elements in a road network. Particularly, road markings provide information about the limits and direction of each road lane, or warn the drivers about potential danger. The optimal condition of road markings contributes to a better road safety. Mobile Laser Scanning technology can be used for infrastructure inspection and specifically for traffic sign detection and inventory. This paper presents a methodology for the detection and semantic characterization of the most common road markings, namely pedestrian crossings and arrows. The 3D point cloud data acquired by a LYNX Mobile Mapper system is filtered in order to isolate reflective points in the road, and each single element is hierarchically classified using Neural Networks. State of the art results are obtained for the extraction and classification of the markings, with F-scores of 94% and 96% respectively. Finally, data from classified markings are exported to a GIS layer and maintenance criteria based on the aforementioned data are proposed.
Show full item record

Files in this item

[PDF]
Name:
Segmentation and classification ...
Size:
964.8Kb
Format:
PDF
View/Open

Share/ send to

MendeleyZoteroRefworks

El Repositorio Institucional de la Universidade de Vigo Investigo se difunde en:

University library
Rúa Leonardo da Vinci, s/n
As Lagoas, Marcosende
36310 Vigo

Location

Information
+34 986 813 821
investigo@uvigo.gal

Accessibility | Legal notice | Data protection
Logo UVigo

INFORMACIÓN
+34 986 812 000
informacion@uvigo.gal

CONTACTO

CAMPUS DO MAR

CAMPUS DE OURENSE
+34 988 387 102
Campus da Auga

CAIXA DE QUEIXAS, SUXESTIÓNS E PARABÉNS

TRANSPARENCIA

CAMPUS DE PONTEVEDRA
+34 986 801 949
Campus CREA

OUTRAS WEBS INSTITUCIONAIS

EMERXENCIAS

CAMPUS DE VIGO
+34 986 812 000
Campus Vigo Tecnolóxico

MURO SOCIAL