Show simple item record

dc.contributor.authorSoilán Rodríguez, Mario 
dc.contributor.authorRiveiro Rodríguez, Belén 
dc.contributor.authorMartínez Sánchez, Joaquín 
dc.contributor.authorArias Sánchez, Pedro 
dc.date.accessioned2019-10-11T08:58:05Z
dc.date.available2019-10-11T08:58:05Z
dc.date.issued2017-01
dc.identifier.citationISPRS Journal of Photogrammetry and Remote Sensing, 123, 94-103 (2017)spa
dc.identifier.issn09242716
dc.identifier.urihttp://hdl.handle.net/11093/1336
dc.description.abstractTraffic signs are one of the most important safety elements in a road network. Particularly, road markings provide information about the limits and direction of each road lane, or warn the drivers about potential danger. The optimal condition of road markings contributes to a better road safety. Mobile Laser Scanning technology can be used for infrastructure inspection and specifically for traffic sign detection and inventory. This paper presents a methodology for the detection and semantic characterization of the most common road markings, namely pedestrian crossings and arrows. The 3D point cloud data acquired by a LYNX Mobile Mapper system is filtered in order to isolate reflective points in the road, and each single element is hierarchically classified using Neural Networks. State of the art results are obtained for the extraction and classification of the markings, with F-scores of 94% and 96% respectively. Finally, data from classified markings are exported to a GIS layer and maintenance criteria based on the aforementioned data are proposed.spa
dc.description.sponsorshipMinisterio de Economía y Competitividad | Ref. BES-2014-067736spa
dc.description.sponsorshipMinisterio de Economía y Competitividad | Ref. TIN2013-46801-C4-4-Rspa
dc.language.isoengspa
dc.publisherISPRS Journal of Photogrammetry and Remote Sensingspa
dc.relationinfo:eu-repo/grantAgreement/MINECO//BES-2014-067736/ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/TIN2013-46801-C4-4-R/ES/HEALTHY AND EFFICIENT ROUTES IN MASSIVE OPEN-DATA BASED SMART CITIES: SMART 3D MODELLING
dc.titleSegmentation and classification of road markings using MLS dataen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1016/j.isprsjprs.2016.11.011
dc.identifier.editorhttps://linkinghub.elsevier.com/retrieve/pii/S0924271616303173spa
dc.publisher.departamentoEnxeñaría dos materiais, mecánica aplicada e construciónspa
dc.publisher.departamentoEnxeñaría dos recursos naturais e medio ambientespa
dc.publisher.grupoinvestigacionXeotecnoloxías Aplicadasspa
dc.subject.unesco3305.06 Ingeniería Civilspa
dc.date.updated2019-10-10T15:10:56Z
dc.computerCitationpub_title=ISPRS Journal of Photogrammetry and Remote Sensing|volume=123|journal_number=|start_pag=94|end_pag=103spa


Files in this item

[PDF]

    Show simple item record