dc.contributor.author | Balado Frías, Jesús | |
dc.contributor.author | Díaz Vilariño, Lucía | |
dc.contributor.author | Arias Sánchez, Pedro | |
dc.contributor.author | González Jorge, Higinio | |
dc.date.accessioned | 2019-10-29T12:46:20Z | |
dc.date.available | 2020-03-01T00:15:06Z | |
dc.date.issued | 2018-02 | |
dc.identifier.citation | Automation in Construction, 86, 226-239 (2018) | spa |
dc.identifier.issn | 09265805 | |
dc.identifier.uri | http://hdl.handle.net/11093/1350 | |
dc.description.abstract | Accessibility diagnosis of as-built urban environments is essential for path planning, especially in case of people with reduced mobility and it requires an in-depth knowledge of ground elements. In this paper, we present a new approach for automatically detect and classify urban ground elements from 3D point clouds. The methodology enables a high level of detail classification from the combination of geometric and topological information. The method starts by a planar segmentation followed by a refinement based on split and merge operations. Next, a feature analysis and a geometric decision tree are followed to classify regions in preliminary classes. Finally, adjacency is studied to verify and correct the preliminary classification based on a comparison with a topological graph library. The methodology is tested in four real complex case studies acquired with a Mobile Laser Scanner Device. In total, five classes are considered (roads, sidewalks, treads, risers and curbs). Results show a success rate of 97% in point classification, enough to analyse extensive urban areas from an accessibility point of view. The combination of topology and geometry improves a 10% to 20% the success rate obtained with only the use of geometry. | spa |
dc.description.sponsorship | Cátedra SCI-EYSA. Smart cities e seguridade vial | spa |
dc.description.sponsorship | Xunta de Galicia. ED481B 2016/079-0 | spa |
dc.description.sponsorship | Ministerio de Economía y Competitividad. TIN2016-77158-C4-2-R | spa |
dc.language.iso | eng | spa |
dc.publisher | Automation in Construction | spa |
dc.title | Automatic classification of urban ground elements from mobile laser scanning data | spa |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.relation.projectID | info:eu-repo/grantAgreement/EU/H2020/720661 | spa |
dc.identifier.doi | 10.1016/j.autcon.2017.09.004 | |
dc.identifier.editor | https://linkinghub.elsevier.com/retrieve/pii/S092658051730153X | spa |
dc.publisher.departamento | Enxeñaría dos recursos naturais e medio ambiente | spa |
dc.publisher.grupoinvestigacion | Xeotecnoloxías Aplicadas | spa |
dc.subject.unesco | 330522 Metrología de la edificación | |
dc.subject.unesco | 331102 Ingeniería de control | |
dc.subject.unesco | 330534 Topografía de la edificación | |
dc.date.updated | 2019-10-29T11:12:42Z | |
dc.computerCitation | pub_title=Automation in Construction|volume=86|journal_number=|start_pag=226|end_pag=239 | spa |