BibliotecaPortal de investigación
en | gl
  • Inicio
  • Contacto
  • Sugerencias
  • Ayuda
    • Sobre Investigo
    • Buscar y Encontrar
    • Depositar
    • Propiedad Intelectual
    • Política acceso abierto
  • Enlaces
    • Sherpa / Romeo
    • Dulcinea
    • OpenDOAR
    • Dialnet Plus
    • ORCID
    • Creative Commons
    • Clasificación UNESCO
    • español
    • English
    • Gallegan
JavaScript is disabled for your browser. Some features of this site may not work without it.
Todo InvestigoAutores/asTítulos Materia Unesco Grupos de InvestigaciónTipo de ContenidosTítulos de RevistaEsta colecciónAutores/asTítulosMaterias UNESCOGrupos de InvestigaciónTipo de ContenidosTítulos de Revista

Depositar

Guía de autoarchivo (en construcción)Solicitar permiso a una editorial

Estadísticas

Ver Estadísticas de uso

Automatic LOD0 classification of airborne LiDAR data in urban and non-urban areas

Balado Frías, JesúsAutor UVIGO; Díaz Vilariño, LucíaAutor UVIGO; Arias Sánchez, PedroAutor UVIGO; González De Santos, Luis MiguelAutor UVIGO
FECHA: 2018-01
IDENTIFICADOR UNIVERSAL: http://hdl.handle.net/11093/1358
MATERIA UNESCO: 3325 Tecnología de las Telecomunicaciones
TIPO DE DOCUMENTO: article

RESUMEN

Point clouds are a very detailed and accurate vector data model of 3D geographic information. In contrast to other data models, no standard has been defined for visualization and management of point clouds based on levels of detail (LOD). This paper proposes the application of the concept of LODs to point clouds and defines the LOD0 for point cloud classification (the lowest possible level of detail) as urban and non-urban. A methodology based on the use of machine learning techniques is developed to perform LOD0 classification to airborne LiDAR data. Point clouds acquired with airborne laser scanner (ALS) are structured in grid maps and geometric features related with Z distribution and roughness are extracted from each cell. Six machine learning classifiers have been trained with datasets including urban (cities) and non-urban samples (farmlands and forests). The influence of grid size, point density, number of features and classifier type are analysed in detail. The classifiers have been tested in three case studies. The best results correspond to a grid size of 100 m and the use of 12 geometric features. The accuracy is around 90% in all tests and Cohen’s Kappa index reaches 81% in the best of cases.
Mostrar el registro completo del ítem

Ficheros en el ítem

[PDF]
Nombre:
Balado_Frias_2018_Automatic_ ...
Tamaño:
2.855Mb
Formato:
PDF
Ver/Abrir

El Repositorio Institucional de la Universidade de Vigo Investigo se difunde en:

Biblioteca universitaria
Rúa Leonardo da Vinci, s/n
As Lagoas, Marcosende
36310 Vigo

Localización

Información
+34 986 813 821
investigo@uvigo.gal

Accesibilidad | Aviso legal | Protección de datos
Logo UVigo

INFORMACIÓN
+34 986 812 000
informacion@uvigo.gal

CONTACTO

CAMPUS DO MAR

CAMPUS DE OURENSE
+34 988 387 102
Campus da Auga

CAIXA DE QUEIXAS, SUXESTIÓNS E PARABÉNS

TRANSPARENCIA

CAMPUS DE PONTEVEDRA
+34 986 801 949
Campus CREA

OUTRAS WEBS INSTITUCIONAIS

EMERXENCIAS

CAMPUS DE VIGO
+34 986 812 000
Campus Vigo Tecnolóxico

MURO SOCIAL