Show simple item record

dc.contributor.authorBalado Frías, Jesús 
dc.contributor.authorDíaz Vilariño, Lucía 
dc.contributor.authorArias Sánchez, Pedro 
dc.contributor.authorGonzález De Santos, Luis Miguel 
dc.date.accessioned2019-11-06T10:55:43Z
dc.date.available2019-11-06T10:55:43Z
dc.date.issued2018-01
dc.identifier.citationEuropean Journal of Remote Sensing, 51(1): 978-990 (2018)spa
dc.identifier.issn22797254
dc.identifier.urihttp://hdl.handle.net/11093/1358
dc.description.abstractPoint clouds are a very detailed and accurate vector data model of 3D geographic information. In contrast to other data models, no standard has been defined for visualization and management of point clouds based on levels of detail (LOD). This paper proposes the application of the concept of LODs to point clouds and defines the LOD0 for point cloud classification (the lowest possible level of detail) as urban and non-urban. A methodology based on the use of machine learning techniques is developed to perform LOD0 classification to airborne LiDAR data. Point clouds acquired with airborne laser scanner (ALS) are structured in grid maps and geometric features related with Z distribution and roughness are extracted from each cell. Six machine learning classifiers have been trained with datasets including urban (cities) and non-urban samples (farmlands and forests). The influence of grid size, point density, number of features and classifier type are analysed in detail. The classifiers have been tested in three case studies. The best results correspond to a grid size of 100 m and the use of 12 geometric features. The accuracy is around 90% in all tests and Cohen’s Kappa index reaches 81% in the best of cases.spa
dc.description.sponsorshipMinisterio de Economia, Industria y Competitividad -Gobierno de España 10.13039/501100010198 | Ref. RTC-2016-5257-7spa
dc.description.sponsorshipMinisterio de Economia, Industria y Competitividad -Gobierno de España 10.13039/501100010198 | Ref. TIN2016-77158-C4-2-Rspa
dc.description.sponsorshipDirección General de Tráfico (Spanish Ministry of Interior) | Ref. SPIP2017-02122spa
dc.description.sponsorshipUniversidade de Vigo 10.13039/501100006761 | Ref. 00VI 131H 641.02spa
dc.description.sponsorshipXunta de Galicia 10.13039/501100010801 | Ref. ED431C 2016-038spa
dc.description.sponsorshipXunta de Galicia 10.13039/501100010801 | Ref. ED481B 2016/079-0spa
dc.language.isoengspa
dc.publisherEuropean Journal of Remote Sensingspa
dc.titleAutomatic LOD0 classification of airborne LiDAR data in urban and non-urban areasspa
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1080/22797254.2018.1522934
dc.identifier.editorhttps://www.tandfonline.com/doi/full/10.1080/22797254.2018.1522934spa
dc.publisher.departamentoEnxeñaría dos recursos naturais e medio ambientespa
dc.publisher.grupoinvestigacionXeotecnoloxías Aplicadasspa
dc.subject.unesco3325 Tecnología de las Telecomunicacionesspa
dc.date.updated2019-10-29T08:29:10Z
dc.computerCitationpub_title=European Journal of Remote Sensing|volume=51|journal_number=1|start_pag=978|end_pag=990spa


Files in this item

[PDF]

    Show simple item record