BibliotecaPortal de investigación
es | gl
  • Inicio
  • Contact us
  • Give feedback
  • Help
    • About Investigo
    • Search and Find
    • Submit
    • Intellectual Property
    • Open Access Policy
  • Links
    • Sherpa / Romeo
    • Dulcinea
    • OpenDOAR
    • Dialnet Plus
    • ORCID
    • Creative Commons
    • UNESCO Nomenclature
    • español
    • English
    • Gallegan
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of InvestigoAuthorsTitles Materias Unesco Research GroupsType of ContentsJournal TitlesThis CollectionAuthorsTitlesUNESCO SubjectsResearch GroupsType of ContentsJournal Titles

Depositar

Guía de autoarchivo (en construcción)Solicitar permiso a una editorial

Statistics

View Usage Statistics

Road environment semantic segmentation with deep learning from MLS point cloud data

Balado Frías, JesúsAutor UVIGO; Martínez Sánchez, JoaquínAutor UVIGO; Arias Sánchez, PedroAutor UVIGO; Novo Gómez, AnaAutor UVIGO
DATE: 2019-08-08
UNIVERSAL IDENTIFIER: http://hdl.handle.net/11093/1419
UNESCO SUBJECT: 3305.22 Metrología de la Edificación ; 3311.02 Ingeniería de Control
DOCUMENT TYPE: article

ABSTRACT

In the near future, the communication between autonomous cars will produce a network of sensors that will allow us to know the state of the roads in real time. Lidar technology, upon which most autonomous cars are based, allows the acquisition of 3D geometric information of the environment. The objective of this work is to use point clouds acquired by Mobile Laser Scanning (MLS) to segment the main elements of road environment (road surface, ditches, guardrails, fences, embankments, and borders) through the use of PointNet. Previously, the point cloud was automatically divided into sections in order for semantic segmentation to be scalable to different case studies, regardless of their shape or length. An overall accuracy of 92.5% has been obtained, but with large variations between classes. Elements with a greater number of points have been segmented more effectively than the other elements. In comparison with other point-by-point extraction and ANN-based classification techniques, the same success rates have been obtained for road surfaces and fences, and better results have been obtained for guardrails. Semantic segmentation with PointNet is suitable when segmenting the scene as a whole, however, if certain classes have more interest, there are other alternatives that do not need a high training cost.
Show full item record

Files in this item

[PDF]
Name:
Road_Environment_Semantic_Segm ...
Size:
1.598Mb
Format:
PDF
View/Open

El Repositorio Institucional de la Universidade de Vigo Investigo se difunde en:

University library
Rúa Leonardo da Vinci, s/n
As Lagoas, Marcosende
36310 Vigo

Location

Information
+34 986 813 821
investigo@uvigo.gal

Accessibility | Legal notice | Data protection
Logo UVigo

INFORMACIÓN
+34 986 812 000
informacion@uvigo.gal

CONTACTO

CAMPUS DO MAR

CAMPUS DE OURENSE
+34 988 387 102
Campus da Auga

CAIXA DE QUEIXAS, SUXESTIÓNS E PARABÉNS

TRANSPARENCIA

CAMPUS DE PONTEVEDRA
+34 986 801 949
Campus CREA

OUTRAS WEBS INSTITUCIONAIS

EMERXENCIAS

CAMPUS DE VIGO
+34 986 812 000
Campus Vigo Tecnolóxico

MURO SOCIAL