BibliotecaPortal de investigación
es | en
  • Inicio
  • Contacto
  • Suxestións
  • Axuda
    • Sobre Investigo
    • Buscar e Atopar
    • Depositar
    • Propiedade Intelectual
    • Política acceso aberto
  • Enlaces
    • Sherpa / Romeo
    • Dulcinea
    • OpenDOAR
    • Dialnet Plus
    • ORCID
    • Creative Commons
    • Clasificación UNESCO
    • español
    • English
    • Gallegan
JavaScript is disabled for your browser. Some features of this site may not work without it.
Todo InvestigoAutores/asTítulos Materias Unesco Grupos de InvestigaciónTipo de ContidosTítulos de RevistaEsta colecciónAutores/asTítulosMaterias UNESCOGrupos de InvestigaciónTipo de ContidosTítulos de Revista

Depositar

Pasos para depositarSolicitar permiso a unha editorialGuías relacionadas

Estatísticas

Ver estatísticas

Road environment semantic segmentation with deep learning from MLS point cloud data

Balado Frías, JesúsAutor UVIGO; Martínez Sánchez, JoaquínAutor UVIGO; Arias Sánchez, PedroAutor UVIGO; Novo Gómez, AnaAutor UVIGO
DATA: 2019-08-08
IDENTIFICADOR UNIVERSAL: http://hdl.handle.net/11093/1419
VERSIÓN EDITADA: https://www.mdpi.com/1424-8220/19/16/3466
MATERIA UNESCO: 3305.22 Metrología de la Edificación ; 3311.02 Ingeniería de Control
TIPO DE DOCUMENTO: article

RESUMO

In the near future, the communication between autonomous cars will produce a network of sensors that will allow us to know the state of the roads in real time. Lidar technology, upon which most autonomous cars are based, allows the acquisition of 3D geometric information of the environment. The objective of this work is to use point clouds acquired by Mobile Laser Scanning (MLS) to segment the main elements of road environment (road surface, ditches, guardrails, fences, embankments, and borders) through the use of PointNet. Previously, the point cloud was automatically divided into sections in order for semantic segmentation to be scalable to different case studies, regardless of their shape or length. An overall accuracy of 92.5% has been obtained, but with large variations between classes. Elements with a greater number of points have been segmented more effectively than the other elements. In comparison with other point-by-point extraction and ANN-based classification techniques, the same success rates have been obtained for road surfaces and fences, and better results have been obtained for guardrails. Semantic segmentation with PointNet is suitable when segmenting the scene as a whole, however, if certain classes have more interest, there are other alternatives that do not need a high training cost.
Mostrar o rexistro completo do ítem

Ficheiros no ítem

[PDF]
Nome:
Road_Environment_Semantic_Segm ...
Tamaño:
1.598Mb
Formato:
PDF
Ver/abrir

Compartir/ enviar a

MendeleyZoteroRefworks

O Repositorio Institucional da Universidade de Vigo difúndese en:

Biblioteca universitaria
Rúa Leonardo da Vinci, s/n
As Lagoas, Marcosende
36310 Vigo

Localización

Información
+34 986 813 821
investigo@uvigo.gal

Accesibilidade | Aviso legal | Protección de datos
Logo UVigo

INFORMACIÓN
+34 986 812 000
informacion@uvigo.gal

CONTACTO

CAMPUS DO MAR

CAMPUS DE OURENSE
+34 988 387 102
Campus da Auga

CAIXA DE QUEIXAS, SUXESTIÓNS E PARABÉNS

TRANSPARENCIA

CAMPUS DE PONTEVEDRA
+34 986 801 949
Campus CREA

OUTRAS WEBS INSTITUCIONAIS

EMERXENCIAS

CAMPUS DE VIGO
+34 986 812 000
Campus Vigo Tecnolóxico

MURO SOCIAL