Show simple item record

dc.contributor.authorBalado Frías, Jesús 
dc.contributor.authorGonzález Rodríguez, Maria Elena 
dc.contributor.authorVerbree, E.
dc.contributor.authorDíaz Vilariño, Lucía 
dc.contributor.authorLorenzo Cimadevila, Henrique Remixio 
dc.date.accessioned2020-09-17T10:22:41Z
dc.date.available2020-09-17T10:22:41Z
dc.date.issued2020-09-03
dc.identifier.citationISPRS Annals of Photogrammetry Remote Sensing and Spatial Information Sciences, VI-4/W1-2020, 13-20 (2020)spa
dc.identifier.issn21949050
dc.identifier.urihttp://hdl.handle.net/11093/1545
dc.description.abstractOcclusions accompany serious problems that reduce the applicability of numerous algorithms. The aim of this work is to detect and characterize urban ground gaps based on occluding object. The point clouds for input have been acquired with Mobile Laser Scanning and have been previously segmented into ground, buildings and objects, which have been classified. The method generates various raster images according to segmented point cloud elements, and detects gaps within the ground based on their connectivity and the application of the hit-or-miss transform. The method has been tested in four real case studies in the cities of Vigo and Paris, and an accuracy of 99.6% has been obtained in occlusion detection and labelling. Cars caused 80.6% of the occlusions. Each car occluded an average ground area of 11.9 m2. The proposed method facilitates knowing the percentage of occluded ground, and if this would be reduced in successive multi-temporal acquisitions based on mobility characteristics of each object class.spa
dc.description.sponsorshipXunta de Galicia | Ref. ED481B-2019-061spa
dc.description.sponsorshipXunta de Galicia | Ref. ED481D 2019/020spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. RTI2018-095893-B-C21spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PID2019-05221RB-C43spa
dc.language.isoengspa
dc.publisherISPRS Annals of Photogrammetry Remote Sensing and Spatial Information Sciencesspa
dc.relationinfo:eu-repo/grantAgreement/AEI//RTI2018-095893-B-C21/ES/EVALUACION DE CICLO DE VIDA DE ESTRUCTURAS DE PUENTES EXISTENTES UTILIZANDO DATOS MULTIESCALA Y MULTIFUENTES
dc.relationinfo:eu-repo/grantAgreement/AEI//PID2019-05221RB-C43/ES/
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleAutomatic detection and characterization of ground occlusions in urban point clouds from mobile laser scanning dataen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.relation.projectIDinfo:eu-repo/grantAgreement/EU/H2020/769255spa
dc.identifier.doi10.5194/isprs-annals-VI-4-W1-2020-13-2020
dc.identifier.editorhttps://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/VI-4-W1-2020/13/2020/spa
dc.publisher.departamentoEnxeñaría dos recursos naturais e medio ambientespa
dc.publisher.departamentoDeseño na enxeñaríaspa
dc.publisher.grupoinvestigacionXeotecnoloxías Aplicadasspa
dc.subject.unesco3311.02 Ingeniería de Controlspa
dc.date.updated2020-09-08T12:09:39Z
dc.computerCitationpub_title=ISPRS Annals of Photogrammetry Remote Sensing and Spatial Information Sciences|volume=VI-4/W1-2020|journal_number=|start_pag=13|end_pag=20spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International