Show simple item record

dc.contributor.authorLiz Domínguez, Martín 
dc.contributor.authorCaeiro Rodríguez, Manuel 
dc.contributor.authorLlamas Nistal, Martín 
dc.contributor.authorMikic Fonte, Fernando Ariel 
dc.date.accessioned2020-10-06T08:23:18Z
dc.date.available2020-10-06T08:23:18Z
dc.date.issued2019-12-17
dc.identifier.citationApplied Sciences, 9(24): 5569 (2019)spa
dc.identifier.issn20763417
dc.identifier.urihttp://hdl.handle.net/11093/1579
dc.description.abstractThe topic of predictive algorithms is often regarded among the most relevant fields of study within the data analytics discipline. They have applications in multiple contexts, education being an important one of them. Focusing on higher education scenarios, most notably universities, predictive analysis techniques are present in studies that estimate academic outcomes using different kinds of student-related data. Furthermore, predictive algorithms are the basis of tools such as early warning systems (EWS): applications able to foresee future risks, such as the likelihood of students failing or dropping out of a course, and alert of such risks so that corrective measures can be taken. The purpose of this literature review is to provide an overview of the current state of research activity regarding predictive analytics in higher education, highlighting the most relevant instances of predictors and EWS that have been used in practice. The PRISMA guidelines for systematic literature reviews were followed in this study. The document search process yielded 1382 results, out of which 26 applications were selected as relevant examples of predictors and EWS, each of them defined by the contexts where they were applied and the data that they used. However, one common shortcoming is that they are usually applied in limited scenarios, such as a single course, evidencing that building a predictive application able to work well under different teaching and learning methodologies is an arduous task.spa
dc.description.sponsorshipDepartamento de Educación da Xunta de Galicia | Ref. (TIN2016-80515-R AEI / EFRD, UE)spa
dc.description.sponsorshipAgencia Estatal de Investigaciones | Ref. (TIN2016-80515-R AEI / EFRD, UE)spa
dc.description.sponsorshipEuropean Regional Development Fund (ERDF) | Ref. (TIN2016-80515-R AEI / EFRD, UE)spa
dc.language.isoengspa
dc.publisherApplied Sciencesspa
dc.rightsCreative Commons Attribution (CC BY) license
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleSystematic literature review of predictive analysis tools in higher educationspa
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/app9245569
dc.identifier.editorhttps://www.mdpi.com/2076-3417/9/24/5569spa
dc.publisher.departamentoEnxeñaría telemáticaspa
dc.publisher.grupoinvestigacionGIST (Grupo de Enxeñería de Sistemas Telemáticos)spa
dc.subject.unesco5801.07 Métodos Pedagógicosspa
dc.subject.unesco1203.04 Inteligencia Artificialspa
dc.subject.unesco3307 Tecnología Electrónicaspa
dc.date.updated2020-10-02T12:43:38Z
dc.computerCitationpub_title=Applied Sciences|volume=9|journal_number=24|start_pag=5569|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Creative Commons Attribution
(CC BY) license
    Except where otherwise noted, this item's license is described as Creative Commons Attribution (CC BY) license