BibliotecaPortal de investigación
es | gl
  • Inicio
  • Contact us
  • Give feedback
  • Help
    • About Investigo
    • Search and Find
    • Submit
    • Intellectual Property
    • Open Access Policy
  • Links
    • Sherpa / Romeo
    • Dulcinea
    • OpenDOAR
    • Dialnet Plus
    • ORCID
    • Creative Commons
    • UNESCO Nomenclature
    • español
    • English
    • Gallegan
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of InvestigoAuthorsTitles Materias Unesco Research GroupsType of ContentsJournal TitlesThis CollectionAuthorsTitlesUNESCO SubjectsResearch GroupsType of ContentsJournal Titles

Depositar

Guía de autoarchivo (en construcción)Solicitar permiso a una editorial

Statistics

View Usage Statistics

Automatic defects segmentation and identification by deep learning algorithm with pulsed thermography: Synthetic and experimental data

Fang, Q.; Maldague, Xavier; Garrido González, IvánAutor UVIGO; Erazo Aux, Jorge; Ibarra Castanedo, Clemente
DATE: 2020
UNIVERSAL IDENTIFIER: http://hdl.handle.net/11093/1686
EDITED VERSION: QIRT Council
UNESCO SUBJECT: 1206.01 Construcción de Algoritmos ; 3311.02 Ingeniería de Control
DOCUMENT TYPE: conferenceObject

ABSTRACT

Infrared thermography is used for evaluating composite materials due to the properties of low cost, fast inspection of large surfaces. The application of deep neural networks tends to be a prominent direction in the Infrared Non-Destructive Testing. During the training of the neural network, the Achilles heel is the database. The collection of huge amounts of training data is the high expense task. In Non-Destructive Testing with deep learning, the synthetic data contributing to training in infrared thermography remains unexplored. In this paper, synthetic data from the standard Finite Element Models is combined with experimental data to build repositories with Mask-RCNN to achieve defect segmentation.
Show full item record

Files in this item

[PDF]
Name:
GarridoGonzalez_Ivan_QIRT_2020 ...
Size:
1.840Mb
Format:
PDF
View/Open

El Repositorio Institucional de la Universidade de Vigo Investigo se difunde en:

University library
Rúa Leonardo da Vinci, s/n
As Lagoas, Marcosende
36310 Vigo

Location

Information
+34 986 813 821
investigo@uvigo.gal

Accessibility | Legal notice | Data protection
Logo UVigo

INFORMACIÓN
+34 986 812 000
informacion@uvigo.gal

CONTACTO

CAMPUS DO MAR

CAMPUS DE OURENSE
+34 988 387 102
Campus da Auga

CAIXA DE QUEIXAS, SUXESTIÓNS E PARABÉNS

TRANSPARENCIA

CAMPUS DE PONTEVEDRA
+34 986 801 949
Campus CREA

OUTRAS WEBS INSTITUCIONAIS

EMERXENCIAS

CAMPUS DE VIGO
+34 986 812 000
Campus Vigo Tecnolóxico

MURO SOCIAL