Show simple item record

dc.contributor.authorHalawa, Mohamed Soliman
dc.contributor.authorDíaz Redondo, Rebeca Pilar 
dc.contributor.authorFernández Vilas, Ana 
dc.date.accessioned2021-02-01T07:59:17Z
dc.date.available2021-02-01T07:59:17Z
dc.date.issued2020-07-23
dc.identifier.citationSensors, 20(15): 4111 (2020)spa
dc.identifier.issn14248220
dc.identifier.urihttp://hdl.handle.net/11093/1719
dc.description.abstractPerformance analysis is an essential task in high-performance computing (HPC) systems, and it is applied for different purposes, such as anomaly detection, optimal resource allocation, and budget planning. HPC monitoring tasks generate a huge number of key performance indicators (KPIs) to supervise the status of the jobs running in these systems. KPIs give data about CPU usage, memory usage, network (interface) traffic, or other sensors that monitor the hardware. Analyzing this data, it is possible to obtain insightful information about running jobs, such as their characteristics, performance, and failures. The main contribution in this paper was to identify which metric/s (KPIs) is/are the most appropriate to identify/classify different types of jobs according to their behavior in the HPC system. With this aim, we had applied different clustering techniques (partition and hierarchical clustering algorithms) using a real dataset from the Galician computation center (CESGA). We concluded that (i) those metrics (KPIs) related to the network (interface) traffic monitoring provided the best cohesion and separation to cluster HPC jobs, and (ii) hierarchical clustering algorithms were the most suitable for this task. Our approach was validated using a different real dataset from the same HPC center.spa
dc.description.sponsorshipMinisterio de Economía y Competitividad | Ref. TEC2017-84197-C4-2-Rspa
dc.language.isoengen
dc.publisherSensorsspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-84197-C4-2-R/ES/MAGOS: DETECCION DE IRREGULARIDADES EN FUENTES DE DATOS Y PROCESOS DISTRIBUIDOS
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleUnsupervised KPIs-based clustering of jobs in HPC data centersen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/s20154111
dc.identifier.editorhttps://www.mdpi.com/1424-8220/20/15/4111spa
dc.publisher.departamentoEnxeñaría telemáticaspa
dc.publisher.grupoinvestigacionGrupo de Servicios para la Sociedad de la Informaciónspa
dc.subject.unesco1203.17 Informáticaspa
dc.subject.unesco1209.03 Análisis de Datosspa
dc.subject.unesco3325 Tecnología de las Telecomunicacionesspa
dc.date.updated2021-01-27T09:25:02Z
dc.computerCitationpub_title=Sensors|volume=20|journal_number=15|start_pag=4111|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International