Show simple item record

dc.contributor.authorComesaña Campos, Alberto 
dc.contributor.authorCasal Guisande, Manuel 
dc.contributor.authorCerqueiro Pequeño, Jorge 
dc.contributor.authorBouza Rodriguez, Jose Benito 
dc.date.accessioned2021-03-03T18:41:13Z
dc.date.available2021-03-03T18:41:13Z
dc.date.issued2020-11-20
dc.identifier.citationInternational Journal of Environmental Research and Public Health, 17(22): 8644 (2020)spa
dc.identifier.issn16604601
dc.identifier.urihttp://hdl.handle.net/11093/1824
dc.description.abstractRespiratory diseases are currently considered to be amongst the most frequent causes of death and disability worldwide, and even more so during the year 2020 because of the COVID-19 global pandemic. Aiming to reduce the impact of these diseases, in this work a methodology is developed that allows the early detection and prevention of potential hypoxemic clinical cases in patients vulnerable to respiratory diseases. Starting from the methodology proposed by the authors in a previous work and grounded in the definition of a set of expert systems, the methodology can generate alerts about the patient’s hypoxemic status by means of the interpretation and combination of data coming both from physical measurements and from the considerations of health professionals. A concurrent set of Mamdani-type fuzzy-logic inference systems allows the collecting and processing of information, thus determining a final alert associated with the measurement of the global hypoxemic risk. This new methodology has been tested experimentally, producing positive results so far from the viewpoint of time reduction in the detection of a blood oxygen saturation deficit condition, thus implicitly improving the consequent treatment options and reducing the potential adverse effects on the patient’s health.spa
dc.description.sponsorshipUniversidade de Vigospa
dc.description.sponsorshipXunta de Galiciaspa
dc.language.isoengspa
dc.publisherInternational Journal of Environmental Research and Public Healthspa
dc.rightsCreative Commons Attribution (CC BY) license
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.source.uriCreative Commons Attribution (CC BY) license
dc.titleA methodology based on expert systems for the early detection and prevention of hypoxemic clinical casesspa
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/ijerph17228644
dc.identifier.editorhttps://www.mdpi.com/1660-4601/17/22/8644spa
dc.publisher.departamentoDeseño na enxeñaríaspa
dc.publisher.grupoinvestigacionGED (Grupo de Enxeñería e Deseño)spa
dc.publisher.grupoinvestigacionGrupo de Enxeñería de Deseño e Fabricación (GEDEFA)spa
dc.subject.unesco1105 Metodologíaspa
dc.subject.unesco3212 Salud Publicaspa
dc.subject.unesco3210 Medicina Preventivaspa
dc.date.updated2021-03-01T09:53:27Z
dc.computerCitationpub_title=International Journal of Environmental Research and Public Health|volume=17|journal_number=22|start_pag=8644|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Creative Commons Attribution
(CC BY) license
    Except where otherwise noted, this item's license is described as Creative Commons Attribution (CC BY) license