BibliotecaPortal de investigación
es | gl
  • Inicio
  • Contact us
  • Give feedback
  • Help
    • About Investigo
    • Search and Find
    • Submit
    • Intellectual Property
    • Open Access Policy
  • Links
    • Sherpa / Romeo
    • Dulcinea
    • OpenDOAR
    • Dialnet Plus
    • ORCID
    • Creative Commons
    • UNESCO Nomenclature
    • español
    • English
    • Gallegan
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of InvestigoAuthorsTitles Materias Unesco Research GroupsType of ContentsJournal TitlesThis CollectionAuthorsTitlesUNESCO SubjectsResearch GroupsType of ContentsJournal Titles

Depositar

Guía de autoarchivo (en construcción)Solicitar permiso a una editorial

Statistics

View Usage Statistics

A genetic algorithm approach for feature selection in potatoes classification by computer vision

Dacal Nieto, ÁngelAutor UVIGO; Vázquez Fernández, Esteban; Formella, Arno; Martín Rodríguez, FernandoAutor UVIGO; Torres Guijarro, Maria SoledadAutor UVIGO; González Jorge, HiginioAutor UVIGO
DATE: 2009
UNIVERSAL IDENTIFIER: http://hdl.handle.net/11093/1855
EDITED VERSION: IEEE
UNESCO SUBJECT: 1206.01 Construcción de Algoritmos ; 1203.06 Sistemas Automatizados de Control de Calidad ; 3309 Tecnología de Los Alimentos
DOCUMENT TYPE: conferenceObject

ABSTRACT

Potato quality control has improved in the last years thanks to automation techniques like machine vision, mainly making the classification task between different quality degrees faster, safer and less subjective. We present a system that classifies potatoes depending on their external defects and diseases. Firstly, some image processing techniques are used to segment and analyze the potatoes. Then, a classifier is used to decide the group the potato belongs to. For the feature selection task, we have designed an ad-hoc genetic algorithm which maximizes the classification percentage. This approach is used to perform an optimization in the search of the better feature combination. The system shows to be effective in real operation simulations (working with unwashed potatoes covered with dust and sand,), what seems to be a good starting point in the development of the system.
Show full item record

Files in this item

[PDF]
Name:
DacalNieto_Angel_2009_A_gen.pdf
Size:
765.0Kb
Format:
PDF
View/Open

El Repositorio Institucional de la Universidade de Vigo Investigo se difunde en:

University library
Rúa Leonardo da Vinci, s/n
As Lagoas, Marcosende
36310 Vigo

Location

Information
+34 986 813 821
investigo@uvigo.gal

Accessibility | Legal notice | Data protection
Logo UVigo

INFORMACIÓN
+34 986 812 000
informacion@uvigo.gal

CONTACTO

CAMPUS DO MAR

CAMPUS DE OURENSE
+34 988 387 102
Campus da Auga

CAIXA DE QUEIXAS, SUXESTIÓNS E PARABÉNS

TRANSPARENCIA

CAMPUS DE PONTEVEDRA
+34 986 801 949
Campus CREA

OUTRAS WEBS INSTITUCIONAIS

EMERXENCIAS

CAMPUS DE VIGO
+34 986 812 000
Campus Vigo Tecnolóxico

MURO SOCIAL