Show simple item record

dc.contributor.authorGarcía Soidán, Maria Del Pilar Hortensia 
dc.contributor.authorCotos Yáñez, Tomas Raimundo 
dc.date.accessioned2021-03-17T07:45:57Z
dc.date.available2021-03-17T07:45:57Z
dc.date.issued2020-11-20
dc.identifier.citationMathematics, 8(11): 2077 (2020)spa
dc.identifier.issn22277390
dc.identifier.urihttp://hdl.handle.net/11093/1870
dc.description.abstractThe kriging methodology can be applied to predict the value of a spatial variable at an unsampled location, from the available spatial data. Furthermore, additional information from secondary variables, correlated with the target one, can be included in the resulting predictor by using the cokriging techniques. The latter procedures require a previous specification of the multivariate dependence structure, difficult to characterize in practice in an appropriate way. To simplify this task, the current work introduces a nonparametric kernel approach for prediction, which satisfies good properties, such as asymptotic unbiasedness or the convergence to zero of the mean squared prediction error. The selection of the bandwidth parameters involved is also addressed, as well as the estimation of the remaining unknown terms in the kernel predictor. The performance of the new methodology is illustrated through numerical studies with simulated data, carried out in different scenarios. In addition, the proposed nonparametric approach is applied to predict the concentrations of a pollutant that represents a risk to human health, the cadmium, in the floodplain of the Meuse river (Netherlands), by incorporating the lead level as an auxiliary variable.spa
dc.description.sponsorshipFEDER | Ref. TEC2015–65353 – Rspa
dc.description.sponsorshipEspaña. Ministerio de Ciencia e Innovación | Ref. MTM2017–89422 – Pspa
dc.description.sponsorshipXunta de Galicia ( | Ref. GRC ED431C 2016/040spa
dc.language.isoengspa
dc.publisherMathematicsspa
dc.rightsCreative Commons Attribution (CC BY) license
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleUse of correlated data for nonparametric prediction of a spatial target variablespa
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/math8112077
dc.identifier.editorhttps://www.mdpi.com/2227-7390/8/11/2077spa
dc.publisher.departamentoEstatística e investigación operativaspa
dc.publisher.grupoinvestigacionAntenas, Radar e Comunicacións Ópticasspa
dc.publisher.grupoinvestigacionInferencia Estatística, Decisión e Investigación Operativaspa
dc.subject.unesco1209 Estadísticaspa
dc.subject.unesco5401.03 Utilización de la Tierraspa
dc.subject.unesco5302 Econometríaspa
dc.date.updated2021-03-15T11:57:47Z
dc.computerCitationpub_title=Mathematics|volume=8|journal_number=11|start_pag=2077|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Creative Commons Attribution
(CC BY) license
    Except where otherwise noted, this item's license is described as Creative Commons Attribution (CC BY) license