Show simple item record

dc.contributor.authorMarcos Millán, Marco 
dc.contributor.authorCabaleiro Álvarez, David 
dc.contributor.authorGarcía Guimarey, María Jesús
dc.contributor.authorPérez Comuñas, María José
dc.contributor.authorFedele, Laura
dc.contributor.authorFernández Pérez, Josefa
dc.contributor.authorLugo Latas, Luis 
dc.date.accessioned2021-04-06T11:09:48Z
dc.date.available2021-04-06T11:09:48Z
dc.date.issued2017-12-29
dc.identifier.citationNanomaterials, 8(1): 16 (2017)spa
dc.identifier.issn20794991
dc.identifier.urihttp://hdl.handle.net/11093/1911
dc.description.abstractThis study presents new Nano-enhanced Phase Change Materials, NePCMs, formulated as dispersions of functionalized graphene nanoplatelets in a poly(ethylene glycol) with a mass-average molecular mass of 400 g·mol−1 for possible use in Thermal Energy Storage. Morphology, functionalization, purity, molecular mass and thermal stability of the graphene nanomaterial and/or the poly(ethylene glycol) were characterized. Design parameters of NePCMs were defined on the basis of a temporal stability study of nanoplatelet dispersions using dynamic light scattering. Influence of graphene loading on solid-liquid phase change transition temperature, latent heat of fusion, isobaric heat capacity, thermal conductivity, density, isobaric thermal expansivity, thermal diffusivity and dynamic viscosity were also investigated for designed dispersions. Graphene nanoplatelet loading leads to thermal conductivity enhancements up to 23% while the crystallization temperature reduces up to in 4 K. Finally, the heat storage capacities of base fluid and new designed NePCMs were examined by means of the thermophysical properties through Stefan and Rayleigh numbers. Functionalized graphene nanoplatelets leads to a slight increase in the Stefan number.spa
dc.description.sponsorshipXunta de Galicia | Ref. GRC ED431C 2016-034spa
dc.description.sponsorshipXunta de Galicia | Ref. GRC ED431C 2016/001spa
dc.description.sponsorshipXunta de Galicia | Ref. AGRUP2015/11spa
dc.description.sponsorshipMinisterio de Economía y Competitividad (España) | Ref. Ref. ENE2014-55489-C2-2-Rspa
dc.description.sponsorshipMinisterio de Economía y Competitividad (España) | Ref. Ref. ENE2014-55489-C2-1-Rspa
dc.language.isoengspa
dc.publisherNanomaterialsspa
dc.rightsAttribution 4.0 International (CC BY 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.es
dc.titlePEG 400-based phase change materials nano-enhanced with functionalized graphene nanoplateletsspa
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/nano8010016
dc.identifier.editorhttp://www.mdpi.com/2079-4991/8/1/16spa
dc.publisher.departamentoFísica aplicadaspa
dc.publisher.grupoinvestigacionFísica Aplicada 2spa
dc.subject.unesco2213.02 Física de la Transmisión del Calorspa
dc.subject.unesco3328.16 Transferencia de Calorspa
dc.subject.unesco2210.18 Física del Estado Liquidospa
dc.date.updated2021-04-06T11:05:35Z
dc.computerCitationpub_title=Nanomaterials|volume=8|journal_number=1|start_pag=16|end_pag=spa
dc.referencesThis work was supported by the “Ministerio de Economía y Competitividad” (Spain) and the FEDER program through the ENE2014-55489-C2-2-R and ENE2014-55489-C2-1-R Projects. Authors acknowledge the financial support by the Xunta de Galicia through GRC ED431C 2016-034, GRC ED431C 2016/001 and AGRUP2015/11 Programs. D.C. was recipient of a postdoctoral fellowship from Xunta de Galicia (Spain). Authors acknowledge CACTI (Univ. de Vigo) and CACTUS (Univ. Santiago Compostela) for technical assistancespa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International (CC BY 4.0)
    Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)