dc.contributor.author | Lopez Hortas, Lucia | |
dc.contributor.author | Falqué López, Elena | |
dc.contributor.author | Domínguez González, Herminia | |
dc.contributor.author | Torres Pérez, María Dolores | |
dc.date.accessioned | 2021-04-25T10:20:39Z | |
dc.date.available | 2021-04-25T10:20:39Z | |
dc.date.issued | 2019-12-25 | |
dc.identifier.citation | Molecules, 25(1): 92 (2019) | spa |
dc.identifier.issn | 14203049 | |
dc.identifier.uri | http://hdl.handle.net/11093/2025 | |
dc.description.abstract | Microwave hydrodiffusion and gravity (MHG) and ethanolic solid-liquid extraction were compared using selected plant sources. Their bioactive profile, color features, and proximate chemical characterization were determined. MHG extracts, commercial antioxidants, and three distinct types of thermal spring water were used in a sunscreen cream formulation. Their bioactive capacity, chemical and rheological properties were evaluated. MHG Cytisus scoparius flower extract provided the highest bioactive properties. Pleurotus ostreatus MHG liquor exhibited the highest total solid extraction yield. The Brassica rapa MHG sample stood out for its total protein content and its monosaccharide and oligosaccharide concentration. Quercus robur acorns divided into quarters supplied MHG extract with the lowest energy requirements, highest DPPH inhibition percentage, total lipid content and the highest enzyme inhibition. The chemical and bioactive capacities stability of the sunscreen creams elaborated with the selected MHG extracts and the thermal spring waters showed a similar behavior than the samples containing commercial antioxidants. | spa |
dc.description.sponsorship | Ministerio de Economía, Industria y Competitividad (España) | Ref. CTM2015-68503-R | spa |
dc.description.sponsorship | Ministerio de Economía, Industria y Competitividad | Ref. IJCI-2016-27535 | spa |
dc.description.sponsorship | Xunta de Galicia | Ref. 2014/2020 European Social Fund | spa |
dc.language.iso | eng | spa |
dc.publisher | Molecules | spa |
dc.rights | Attribution 4.0 International (CC BY 4.0) | |
dc.source.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.title | Microwave hydrodiffusion and gravity (MHG) extraction from different raw materials with cosmetic applications | spa |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.identifier.doi | 10.3390/molecules25010092 | |
dc.identifier.editor | https://www.mdpi.com/1420-3049/25/1/92 | spa |
dc.publisher.departamento | Enxeñaría química | spa |
dc.publisher.departamento | Química analítica e alimentaria | spa |
dc.publisher.grupoinvestigacion | Enxeñería Química | spa |
dc.subject.unesco | 2301 Química Analítica | spa |
dc.subject.unesco | 3309.03 Antioxidantes en Los Alimentos | spa |
dc.subject.unesco | 3307.08 Dispositivos de Microondas | spa |
dc.subject.unesco | 3328.25 Extracción Sólido - Líquido | spa |
dc.date.updated | 2021-04-22T17:35:57Z | |
dc.computerCitation | pub_title=Molecules|volume=25|journal_number=1|start_pag=92|end_pag= | spa |
dc.references | This research was funded by Ministry of Economy and Competitiveness of Spain (CTM2015-68503-R). L. López-Hortas thanks the Xunta de Galicia for her pre-doctoral grant (2014/2020 European Social Fund). M.D. Torres acknowledges the Ministry of Economy, Industry and Competitiveness for her post-doctoral grant (IJCI-2016-27535). | spa |