Show simple item record

dc.contributor.authorBellas Aláez, Francisco Miguel 
dc.contributor.authorTorres Palenzuela, Jesus Manuel 
dc.contributor.authorSpyrakos, Evangelos
dc.contributor.authorGonzález Vilas, Luís 
dc.date.accessioned2021-05-05T12:07:36Z
dc.date.available2021-05-05T12:07:36Z
dc.date.issued2021-03-25
dc.identifier.citationISPRS International Journal of Geo-Information, 10(4): 199 (2021)spa
dc.identifier.issn22209964
dc.identifier.urihttp://hdl.handle.net/11093/2096
dc.description.abstractThis work presents new prediction models based on recent developments in machine learning methods, such as Random Forest (RF) and AdaBoost, and compares them with more classical approaches, i.e., support vector machines (SVMs) and neural networks (NNs). The models predict Pseudo-nitzschia spp. blooms in the Galician Rias Baixas. This work builds on a previous study by the authors (doi.org/10.1016/j.pocean.2014.03.003) but uses an extended database (from 2002 to 2012) and new algorithms. Our results show that RF and AdaBoost provide better prediction results compared to SVMs and NNs, as they show improved performance metrics and a better balance between sensitivity and specificity. Classical machine learning approaches show higher sensitivities, but at a cost of lower specificity and higher percentages of false alarms (lower precision). These results seem to indicate a greater adaptation of new algorithms (RF and AdaBoost) to unbalanced datasets. Our models could be operationally implemented to establish a short-term prediction system.spa
dc.description.sponsorshipEuropean Commission | Ref. H2020, n. 776348spa
dc.language.isoengen
dc.publisherISPRS International Journal of Geo-Informationspa
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleMachine learning methods applied to the prediction of pseudo-nitzschia spp. blooms in the Galician Rias Baixas (NW Spain)en
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/ijgi10040199
dc.identifier.editorhttps://www.mdpi.com/2220-9964/10/4/199spa
dc.publisher.departamentoFísica aplicadaspa
dc.publisher.grupoinvestigacionFísica Aplicada 2spa
dc.publisher.grupoinvestigacionEcoloxía Acuáticaspa
dc.subject.unesco2510.01 Oceanografía Biológicaspa
dc.subject.unesco1209.14 Técnicas de Predicción Estadísticaspa
dc.subject.unesco2417.05 Biología Marinaspa
dc.date.updated2021-04-29T12:27:57Z
dc.computerCitationpub_title=ISPRS International Journal of Geo-Information|volume=10|journal_number=4|start_pag=199|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International