dc.contributor.author | Martinez Castillo, Cecilia | |
dc.contributor.author | Astray Dopazo, Gonzalo | |
dc.contributor.author | Mejuto Fernández, Juan Carlos | |
dc.date.accessioned | 2021-05-13T08:01:43Z | |
dc.date.available | 2021-05-13T08:01:43Z | |
dc.date.issued | 2021-04-20 | |
dc.identifier.citation | Energies, 14(8): 2332 (2021) | spa |
dc.identifier.issn | 19961073 | |
dc.identifier.uri | http://hdl.handle.net/11093/2136 | |
dc.description.abstract | Different prediction models (multiple linear regression, vector support machines, artificial neural networks and random forests) are applied to model the monthly global irradiation (MGI) from different input variables (latitude, longitude and altitude of meteorological station, month, average temperatures, among others) of different areas of Galicia (Spain). The models were trained, validated and queried using data from three stations, and each best model was checked in two independent stations. The results obtained confirmed that the best methodology is the ANN model which presents the lowest RMSE value in the validation and querying phases 1226 kJ/(m2∙day) and 1136 kJ/(m2∙day), respectively, and predict conveniently for independent stations, 2013 kJ/(m2∙day) and 2094 kJ/(m2∙day), respectively. Given the good results obtained, it is convenient to continue with the design of artificial neural networks applied to the analysis of monthly global irradiation. | spa |
dc.description.sponsorship | Universidade de Vigo | spa |
dc.description.sponsorship | Xunta de Galicia | Ref. POS-B / 2016/001 | spa |
dc.description.sponsorship | Xunta de Galicia | Ref. K645 P.P.0000 421S 140.08 | spa |
dc.language.iso | eng | spa |
dc.publisher | Energies | spa |
dc.rights | Attribution 4.0 International (CC BY 4.0) | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.title | Modelling and prediction of monthly global irradiation using different prediction models | spa |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.identifier.doi | 10.3390/en14082332 | |
dc.identifier.editor | https://www.mdpi.com/1996-1073/14/8/2332 | spa |
dc.publisher.departamento | Química Física | spa |
dc.publisher.grupoinvestigacion | Investigacións Agrarias e Alimentarias | spa |
dc.subject.unesco | 1203.04 Inteligencia Artificial | spa |
dc.subject.unesco | 2106.01 Energía Solar | spa |
dc.subject.unesco | 2502 Climatología | spa |
dc.date.updated | 2021-05-11T07:53:43Z | |
dc.computerCitation | pub_title=Energies|volume=14|journal_number=8|start_pag=2332|end_pag= | spa |