Show simple item record

dc.contributor.authorMartinez Castillo, Cecilia
dc.contributor.authorAstray Dopazo, Gonzalo 
dc.contributor.authorMejuto Fernández, Juan Carlos 
dc.date.accessioned2021-05-13T08:01:43Z
dc.date.available2021-05-13T08:01:43Z
dc.date.issued2021-04-20
dc.identifier.citationEnergies, 14(8): 2332 (2021)spa
dc.identifier.issn19961073
dc.identifier.urihttp://hdl.handle.net/11093/2136
dc.description.abstractDifferent prediction models (multiple linear regression, vector support machines, artificial neural networks and random forests) are applied to model the monthly global irradiation (MGI) from different input variables (latitude, longitude and altitude of meteorological station, month, average temperatures, among others) of different areas of Galicia (Spain). The models were trained, validated and queried using data from three stations, and each best model was checked in two independent stations. The results obtained confirmed that the best methodology is the ANN model which presents the lowest RMSE value in the validation and querying phases 1226 kJ/(m2∙day) and 1136 kJ/(m2∙day), respectively, and predict conveniently for independent stations, 2013 kJ/(m2∙day) and 2094 kJ/(m2∙day), respectively. Given the good results obtained, it is convenient to continue with the design of artificial neural networks applied to the analysis of monthly global irradiation.spa
dc.description.sponsorshipUniversidade de Vigospa
dc.description.sponsorshipXunta de Galicia | Ref. POS-B / 2016/001spa
dc.description.sponsorshipXunta de Galicia | Ref. K645 P.P.0000 421S 140.08spa
dc.language.isoengspa
dc.publisherEnergiesspa
dc.rightsAttribution 4.0 International (CC BY 4.0)
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleModelling and prediction of monthly global irradiation using different prediction modelsspa
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/en14082332
dc.identifier.editorhttps://www.mdpi.com/1996-1073/14/8/2332spa
dc.publisher.departamentoQuímica Físicaspa
dc.publisher.grupoinvestigacionInvestigacións Agrarias e Alimentariasspa
dc.subject.unesco1203.04 Inteligencia Artificialspa
dc.subject.unesco2106.01 Energía Solarspa
dc.subject.unesco2502 Climatologíaspa
dc.date.updated2021-05-11T07:53:43Z
dc.computerCitationpub_title=Energies|volume=14|journal_number=8|start_pag=2332|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International (CC BY 4.0)
    Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)