Show simple item record

dc.contributor.authorEstévez Martínez, Olivia 
dc.contributor.authorAnibarro García, Luis
dc.contributor.authorGaret Fernández, María Elina 
dc.contributor.authorPallares, Ángeles
dc.contributor.authorBarcia, Laura
dc.contributor.authorCalviño, Laura
dc.contributor.authorMaueia, Cremildo
dc.contributor.authorMussá, Tufária
dc.contributor.authorFernández Riverola, Florentino 
dc.contributor.authorGonzález Peña, Daniel 
dc.contributor.authorReboiro Jato, Miguel 
dc.contributor.authorLópez Fernández, Hugo 
dc.contributor.authorFonseca, Nuno A.
dc.contributor.authorReljic, Rajko
dc.contributor.authorGonzález Fernández, Maria Africa 
dc.date.accessioned2021-07-09T11:02:02Z
dc.date.available2021-07-09T11:02:02Z
dc.date.issued2020-07-14
dc.identifier.citationFrontiers in Immunology, 11, 01470 (2020)spa
dc.identifier.issn16643224
dc.identifier.urihttp://hdl.handle.net/11093/2331
dc.description.abstractA better understanding of the response against Tuberculosis (TB) infection is required to accurately identify the individuals with an active or a latent TB infection (LTBI) and also those LTBI patients at higher risk of developing active TB. In this work, we have used the information obtained from studying the gene expression profile of active TB patients and their infected –LTBI- or uninfected –NoTBI- contacts, recruited in Spain and Mozambique, to build a class-prediction model that identifies individuals with a TB infection profile. Following this approach, we have identified several genes and metabolic pathways that provide important information of the immune mechanisms triggered against TB infection. As a novelty of our work, a combination of this class-prediction model and the direct measurement of different immunological parameters, was used to identify a subset of LTBI contacts (called TB-like) whose transcriptional and immunological profiles are suggestive of infection with a higher probability of developing active TB. Validation of this novel approach to identifying LTBI individuals with the highest risk of active TB disease merits further longitudinal studies on larger cohorts in TB endemic areas.eng
dc.description.sponsorshipXunta de Galicia | Ref. ED431C 2016/041spa
dc.description.sponsorshipMinisterio de Educación, Cultura y Deporte | Ref. FPU13/03026spa
dc.language.isoengspa
dc.publisherFrontiers in Immunologyspa
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleAn RNA-seq based machine learning approach identifies latent tuberculosis patients with an active tuberculosis profileeng
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.relation.projectIDinfo:eu-repo/grantAgreement/EU/H2020/643558spa
dc.identifier.doi10.3389/fimmu.2020.01470
dc.identifier.editorhttps://www.frontiersin.org/article/10.3389/fimmu.2020.01470/fullspa
dc.publisher.departamentoInformáticaspa
dc.publisher.departamentoBioquímica, xenética e inmunoloxíaspa
dc.publisher.grupoinvestigacionInmunoloxíaspa
dc.publisher.grupoinvestigacionSistemas Informáticos de Nova Xeraciónspa
dc.subject.unesco3205.08 Enfermedades Pulmonaresspa
dc.subject.unesco3205.05 Enfermedades Infecciosasspa
dc.subject.unesco2412 Inmunologíaspa
dc.date.updated2021-07-09T09:51:34Z
dc.computerCitationpub_title=Frontiers in Immunology|volume=11|journal_number=|start_pag=01470|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International