Show simple item record

dc.contributor.authorLópez Amoedo, Alberto
dc.contributor.authorÁlvarez Bermúdez, Xana 
dc.contributor.authorLorenzo Cimadevila, Henrique Remixio 
dc.contributor.authorRodríguez Somoza, Juan Luis 
dc.date.accessioned2021-08-23T10:15:12Z
dc.date.available2021-08-23T10:15:12Z
dc.date.issued2021-07-29
dc.identifier.citationRemote Sensing, 13(15): 2983 (2021)spa
dc.identifier.issn20724292
dc.identifier.urihttp://hdl.handle.net/11093/2429
dc.description.abstractLand fragmentation and small plots are the main features of the rural environment of Galicia (NW Spain). Smallholding limits land use management, representing a drawback in local forest planning. This study analyzes the potential use of multitemporal Sentinel-2 images to detect and control forest cuts in very small pine and eucalyptus plots located in southern Galicia. The proposed approach is based on the analysis of Sentinel-2 NDVI time series in 4231 plots smaller than 3 ha (average 0.46 ha). The methodology allowed us to detect cuts, allocate cut dates and quantify plot areas due to different cutting cycles in an uneven-aged stand. An accuracy of approximately 95% was achieved when the whole plot was cut, with an 81% accuracy for partial cuts. The main difficulty in detecting and dating cuts was related to cloud cover, which affected the multitemporal analysis. In conclusion, the proposed methodology provides an accurate estimation of cutting date and area, helping to improve the monitoring system in sustainable forest certifications to ensure compliance with forest management plans.spa
dc.description.sponsorshipXunta de Galicia | Ref. ED431C 2020/01spa
dc.language.isoengen
dc.publisherRemote Sensingspa
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleMulti-temporal Sentinel-2 data analysis for smallholding forest cut controlspa
dc.typearticleen
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/rs13152983
dc.identifier.editorhttps://doi.org/10.3390/rs13152983spa
dc.publisher.departamentoEnxeñaría dos recursos naturais e medio ambientespa
dc.publisher.grupoinvestigacionEnxeñería Agroforestalspa
dc.publisher.grupoinvestigacionXeotecnoloxías Aplicadasspa
dc.subject.unesco3106 Ciencia Forestalspa
dc.subject.unesco3106.04 Ordenación de Montesspa
dc.subject.unesco2505.04 Utilización del Terrenospa
dc.date.updated2021-08-16T18:30:15Z
dc.computerCitationpub_title=Remote Sensing|volume=13|journal_number=15|start_pag=2983|end_pag=spa
dc.referencesH.L. is the beneficiary of Xunta de Galicia grant ED431C 2020/01 for Competitive Reference Research Groups (2020–2023). In addition, this research was funded by the Conselleira de Educación, Universidade e Formación Profesional, Xunta de Galicia, España, under project R815 131H 64502 (X.A.)spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International