dc.contributor.author | López Amoedo, Alberto | |
dc.contributor.author | Álvarez Bermúdez, Xana | |
dc.contributor.author | Lorenzo Cimadevila, Henrique Remixio | |
dc.contributor.author | Rodríguez Somoza, Juan Luis | |
dc.date.accessioned | 2021-08-23T10:15:12Z | |
dc.date.available | 2021-08-23T10:15:12Z | |
dc.date.issued | 2021-07-29 | |
dc.identifier.citation | Remote Sensing, 13(15): 2983 (2021) | spa |
dc.identifier.issn | 20724292 | |
dc.identifier.uri | http://hdl.handle.net/11093/2429 | |
dc.description.abstract | Land fragmentation and small plots are the main features of the rural environment of Galicia (NW Spain). Smallholding limits land use management, representing a drawback in local forest planning. This study analyzes the potential use of multitemporal Sentinel-2 images to detect and control forest cuts in very small pine and eucalyptus plots located in southern Galicia. The proposed approach is based on the analysis of Sentinel-2 NDVI time series in 4231 plots smaller than 3 ha (average 0.46 ha). The methodology allowed us to detect cuts, allocate cut dates and quantify plot areas due to different cutting cycles in an uneven-aged stand. An accuracy of approximately 95% was achieved when the whole plot was cut, with an 81% accuracy for partial cuts. The main difficulty in detecting and dating cuts was related to cloud cover, which affected the multitemporal analysis. In conclusion, the proposed methodology provides an accurate estimation of cutting date and area, helping to improve the monitoring system in sustainable forest certifications to ensure compliance with forest management plans. | spa |
dc.description.sponsorship | Xunta de Galicia | Ref. ED431C 2020/01 | spa |
dc.language.iso | eng | en |
dc.publisher | Remote Sensing | spa |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.title | Multi-temporal Sentinel-2 data analysis for smallholding forest cut control | spa |
dc.type | article | en |
dc.rights.accessRights | openAccess | spa |
dc.identifier.doi | 10.3390/rs13152983 | |
dc.identifier.editor | https://doi.org/10.3390/rs13152983 | spa |
dc.publisher.departamento | Enxeñaría dos recursos naturais e medio ambiente | spa |
dc.publisher.grupoinvestigacion | Enxeñería Agroforestal | spa |
dc.publisher.grupoinvestigacion | Xeotecnoloxías Aplicadas | spa |
dc.subject.unesco | 3106 Ciencia Forestal | spa |
dc.subject.unesco | 3106.04 Ordenación de Montes | spa |
dc.subject.unesco | 2505.04 Utilización del Terreno | spa |
dc.date.updated | 2021-08-16T18:30:15Z | |
dc.computerCitation | pub_title=Remote Sensing|volume=13|journal_number=15|start_pag=2983|end_pag= | spa |
dc.references | H.L. is the beneficiary of Xunta de Galicia grant ED431C 2020/01 for Competitive Reference Research Groups (2020–2023). In addition, this research was funded by the Conselleira de Educación, Universidade e Formación Profesional, Xunta de Galicia, España, under project R815 131H 64502 (X.A.) | spa |