Show simple item record

dc.contributor.authorBalado Frías, Jesús 
dc.contributor.authorArias Sánchez, Pedro 
dc.contributor.authorLorenzo Cimadevila, Henrique Remixio 
dc.contributor.authorMeijide Rodríguez, Adrián
dc.date.accessioned2021-09-27T12:08:10Z
dc.date.available2021-09-27T12:08:10Z
dc.date.issued2021-05-28
dc.identifier.citationRemote Sensing, 13(11): 2135 (2021)spa
dc.identifier.issn20724292
dc.identifier.urihttp://hdl.handle.net/11093/2518
dc.description.abstractMobile Laser Scanning (MLS) systems have proven their usefulness in the rapid and accurate acquisition of the urban environment. From the generated point clouds, street furniture can be extracted and classified without manual intervention. However, this process of acquisition and classification is not error-free, caused mainly by disturbances. This paper analyses the effect of three disturbances (point density variation, ambient noise, and occlusions) on the classification of urban objects in point clouds. From point clouds acquired in real case studies, synthetic disturbances are generated and added. The point density reduction is generated by downsampling in a voxel-wise distribution. The ambient noise is generated as random points within the bounding box of the object, and the occlusion is generated by eliminating points contained in a sphere. Samples with disturbances are classified by a pre-trained Convolutional Neural Network (CNN). The results showed different behaviours for each disturbance: density reduction affected objects depending on the object shape and dimensions, ambient noise depending on the volume of the object, while occlusions depended on their size and location. Finally, the CNN was re-trained with a percentage of synthetic samples with disturbances. An improvement in the performance of 10–40% was reported except for occlusions with a radius larger than 1 m.eng
dc.description.sponsorshipXunta de Galicia | Ref. ED431C 2016-038spa
dc.description.sponsorshipXunta de Galicia | Ref. ED481B-2019-061spa
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades | Ref. RTI2018-095893-B-C21spa
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades | Ref. PID2019-105221RB-C43/AEI/10.13039/501100011033spa
dc.description.sponsorshipHorizon 2020 Framework Programme | Ref. 769255spa
dc.language.isoengspa
dc.publisherRemote Sensingspa
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleDisturbance analysis in the classification of objects obtained from urban LiDAR point clouds with convolutional neural networkseng
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095893-B-C21/ES/EVALUACION DE CICLO DE VIDA DE ESTRUCTURAS DE PUENTES EXISTENTES UTILIZANDO DATOS MULTIESCALA Y MULTIFUENTESspa
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105221RB-C43/ES/INTELIGENCIA GEOESPACIAL COMO SOPORTE A LA TOMA DE DECISIONES EN MOVILIDAD URBANAspa
dc.relation.projectIDEU/H2020/769255spa
dc.identifier.doi10.3390/rs13112135
dc.identifier.editorhttps://www.mdpi.com/2072-4292/13/11/2135spa
dc.publisher.departamentoEnxeñaría dos recursos naturais e medio ambientespa
dc.publisher.grupoinvestigacionXeotecnoloxías Aplicadasspa
dc.subject.unesco3311.02 Ingeniería de Controlspa
dc.subject.unesco3305.22 Metrología de la Edificaciónspa
dc.subject.unesco3305.34 Topografía de la Edificaciónspa
dc.date.updated2021-09-27T09:42:27Z
dc.computerCitationpub_title=Remote Sensing|volume=13|journal_number=11|start_pag=2135|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International