Show simple item record

dc.contributor.authorFernandez Villaverde, Alejandro 
dc.contributor.authorPathirana, Dilan
dc.contributor.authorFröhlich, Fabian
dc.contributor.authorHasenauer, Jan
dc.contributor.authorBanga, Julio R.
dc.date.accessioned2021-10-21T08:26:48Z
dc.date.available2021-10-21T08:26:48Z
dc.date.issued2022-01
dc.identifier.citationBriefings in Bioinformatics, 23(1): bbab387 (2022)spa
dc.identifier.issn14675463
dc.identifier.issn14774054
dc.identifier.urihttp://hdl.handle.net/11093/2592
dc.descriptionFinanciado para publicación en acceso aberto: Universidade de Vigo/CISUG
dc.description.abstractOrdinary differential equation models are nowadays widely used for the mechanistic description of biological processes and their temporal evolution. These models typically have many unknown and nonmeasurable parameters, which have to be determined by fitting the model to experimental data. In order to perform this task, known as parameter estimation or model calibration, the modeller faces challenges such as poor parameter identifiability, lack of sufficiently informative experimental data and the existence of local minima in the objective function landscape. These issues tend to worsen with larger model sizes, increasing the computational complexity and the number of unknown parameters. An incorrectly calibrated model is problematic because it may result in inaccurate predictions and misleading conclusions. For nonexpert users, there are a large number of potential pitfalls. Here, we provide a protocol that guides the user through all the steps involved in the calibration of dynamic models. We illustrate the methodology with two models and provide all the code required to reproduce the results and perform the same analysis on new models. Our protocol provides practitioners and researchers in biological modelling with a one-stop guide that is at the same time compact and sufficiently comprehensive to cover all aspects of the problemen
dc.description.sponsorshipMCIN/AEI/ 10.13039/501100011033 | Ref. PID2020-117271RB-C2spa
dc.description.sponsorshipMCIN/AEI/ 10.13039/501100011033 | Ref. DPI2017-82896-C2-2-Rspa
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033 | Ref. RYC-2019-027537-Ispa
dc.description.sponsorshipXunta de Galicia | Ref. ED431F 2021/003spa
dc.language.isoengen
dc.publisherBriefings in Bioinformaticsspa
dc.rightsAttribution-NonCommercial 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleA protocol for dynamic model calibrationen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-117271RB-C22/REGULACION DINAMICA EN VARIAS ESCALAS DE INGENIERIA METABOLICA: INFERENCIA MULTIMODELO Y OPTIMALIDAD DINAMICAspa
dc.relation.projectIDinfo:eu-repo/grantAgreement/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-82896-C2-2-R/ES/DISEÑO, CARACTERIZACION Y AJUSTE OPTIMO DE BIOCIRCUITOS SINTETICOS PARA BIOPRODUCCION CON CONTROL DE CARGA METABOLICAspa
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC-2019-027537-I/ESspa
dc.relation.projectIDinfo:eu-repo/grantAgreement/EU/H2020/686282spa
dc.identifier.doi10.1093/bib/bbab387
dc.identifier.editorhttps://doi.org/10.1093/bib/bbab387spa
dc.publisher.departamentoEnxeñaría de sistemas e automáticaspa
dc.publisher.grupoinvestigacionGrupo de Control non Liñalspa
dc.subject.unesco2404 Biomatemáticasspa
dc.subject.unesco12 Matemáticasspa
dc.date.updated2021-10-12T15:55:31Z
dc.computerCitationpub_title=Briefings in Bioinformatics|volume=23|journal_number=1|start_pag=bbab387|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution-NonCommercial 4.0 International
    Except where otherwise noted, this item's license is described as Attribution-NonCommercial 4.0 International