dc.contributor.author | Bazarra Garcia, Noelia | |
dc.contributor.author | Copetti, M.I.M. | |
dc.contributor.author | Fernández García, José Ramón | |
dc.contributor.author | Quintanilla, Ramón | |
dc.date.accessioned | 2021-11-10T10:45:50Z | |
dc.date.available | 2021-11-10T10:45:50Z | |
dc.date.issued | 2021-08 | |
dc.identifier.citation | Applied Numerical Mathematics, 166, 1-25 (2021) | spa |
dc.identifier.issn | 01689274 | |
dc.identifier.uri | http://hdl.handle.net/11093/2666 | |
dc.description | Financiado para publicación en acceso aberto: Universidade de Vigo/CISUG | |
dc.description.abstract | In the last twenty years, the analysis of problems involving dual-phase-lag models has received an increasing attention. In this work, we consider the coupling between one of these models and the microtemperatures effects. In order to overcome the infinite speed paradox, two relaxation parameters are introduced for each evolution equation related to the temperature and the microtemperatures, leading to a system of linear hyperbolic partial differential equations. Its variational formulation is written in terms of the temperature acceleration and the microtemperatures acceleration. An energy decay property is proved. Next, fully discrete approximations are introduced by using the finite element method and the Euler scheme, proving a stability property and a discrete version of the energy decay, obtaining a priori error estimates and performing one- and two-dimensional numerical simulations | en |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil | Ref. 304709 / 2017-4 | spa |
dc.description.sponsorship | Agencia Estatal de Investigación | Ref. PGC2018-096696-B-I00 | spa |
dc.description.sponsorship | Agencia Estatal de Investigación | Ref. PID2019-105118GB-I00 | spa |
dc.language.iso | eng | en |
dc.publisher | Applied Numerical Mathematics | spa |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.title | Numerical analysis of a dual-phase-lag model with microtemperatures | en |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096696-B-I00/ES/ANALISIS MATEMATICO Y SIMULACION NUMERICA DE PROBLEMAS CON REMODELACION OSEA. APLICACIONES EN EL DISEÑO DE IMPLANTES DENTALES Y PROTESIS | spa |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105118GB-I00/ES/ANALISIS MATEMATICO APLICADO A LA TERMOMECANICA | |
dc.identifier.doi | 10.1016/j.apnum.2021.03.016 | |
dc.identifier.editor | https://linkinghub.elsevier.com/retrieve/pii/S0168927421000866 | spa |
dc.publisher.departamento | Matemática aplicada I | spa |
dc.publisher.grupoinvestigacion | Deseño e Simulación Numérica en Enxeñaría Mecánica | spa |
dc.subject.unesco | 1206.13 Ecuaciones Diferenciales en Derivadas Parciales | spa |
dc.subject.unesco | 12 Matemáticas | spa |
dc.date.updated | 2021-11-03T15:43:37Z | |
dc.references | The authors thank the two anonymous reviewers whose comments have improved the final quality of the article.The work of M.I.M. Copetti was partially supported by the Brazilian institution CNPq (Grant 304709/2017-4).The work of J.R. Fernández was partially supported by the Spanish Ministry of Science, Innovation and Universities under the research project PGC2018-096696-B-I00 (FEDER, UE).The work of R. Quintanilla was supported by project “Análisis Matemático Aplicado a la Termomecánica” of the Spanish Ministry of Science, Innovation and Universities (PID2019-105118GB-I00) | spa |