Show simple item record

dc.contributor.authorBazarra Garcia, Noelia 
dc.contributor.authorCopetti, M.I.M.
dc.contributor.authorFernández García, José Ramón 
dc.contributor.authorQuintanilla, Ramón
dc.date.accessioned2021-11-10T10:45:50Z
dc.date.available2021-11-10T10:45:50Z
dc.date.issued2021-08
dc.identifier.citationApplied Numerical Mathematics, 166, 1-25 (2021)spa
dc.identifier.issn01689274
dc.identifier.urihttp://hdl.handle.net/11093/2666
dc.descriptionFinanciado para publicación en acceso aberto: Universidade de Vigo/CISUG
dc.description.abstractIn the last twenty years, the analysis of problems involving dual-phase-lag models has received an increasing attention. In this work, we consider the coupling between one of these models and the microtemperatures effects. In order to overcome the infinite speed paradox, two relaxation parameters are introduced for each evolution equation related to the temperature and the microtemperatures, leading to a system of linear hyperbolic partial differential equations. Its variational formulation is written in terms of the temperature acceleration and the microtemperatures acceleration. An energy decay property is proved. Next, fully discrete approximations are introduced by using the finite element method and the Euler scheme, proving a stability property and a discrete version of the energy decay, obtaining a priori error estimates and performing one- and two-dimensional numerical simulationsen
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil | Ref. 304709 / 2017-4spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PGC2018-096696-B-I00spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PID2019-105118GB-I00spa
dc.language.isoengen
dc.publisherApplied Numerical Mathematicsspa
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleNumerical analysis of a dual-phase-lag model with microtemperaturesen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096696-B-I00/ES/ANALISIS MATEMATICO Y SIMULACION NUMERICA DE PROBLEMAS CON REMODELACION OSEA. APLICACIONES EN EL DISEÑO DE IMPLANTES DENTALES Y PROTESISspa
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105118GB-I00/ES/ANALISIS MATEMATICO APLICADO A LA TERMOMECANICA
dc.identifier.doi10.1016/j.apnum.2021.03.016
dc.identifier.editorhttps://linkinghub.elsevier.com/retrieve/pii/S0168927421000866spa
dc.publisher.departamentoMatemática aplicada Ispa
dc.publisher.grupoinvestigacionDeseño e Simulación Numérica en Enxeñaría Mecánicaspa
dc.subject.unesco1206.13 Ecuaciones Diferenciales en Derivadas Parcialesspa
dc.subject.unesco12 Matemáticasspa
dc.date.updated2021-11-03T15:43:37Z
dc.referencesThe authors thank the two anonymous reviewers whose comments have improved the final quality of the article.The work of M.I.M. Copetti was partially supported by the Brazilian institution CNPq (Grant 304709/2017-4).The work of J.R. Fernández was partially supported by the Spanish Ministry of Science, Innovation and Universities under the research project PGC2018-096696-B-I00 (FEDER, UE).The work of R. Quintanilla was supported by project “Análisis Matemático Aplicado a la Termomecánica” of the Spanish Ministry of Science, Innovation and Universities (PID2019-105118GB-I00)spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International