Show simple item record

dc.contributor.authorAlonso Álvarez, José Nicanor 
dc.contributor.authorFernández Vilaboa, José Manuel
dc.contributor.authorGonzález Rodríguez, Ramón 
dc.date.accessioned2021-12-02T12:10:39Z
dc.date.available2021-12-02T12:10:39Z
dc.date.issued2021-02-21
dc.identifier.citationMathematics, 9(4): 424 (2021)spa
dc.identifier.issn22277390
dc.identifier.urihttp://hdl.handle.net/11093/2806
dc.description.abstractIn this paper, we prove that for any pair of weak Hopf monoids H and B in a symmetric monoidal category where every idempotent morphism splits, the category of H-B-Long dimodules HBLong is monoidal. Moreover, if H is quasitriangular and B coquasitriangular, we also prove that HBLong is braided. As a consequence of this result, we obtain that if H is triangular and B cotriangular, HBLong is an example of a symmetric monoidal category.en
dc.description.sponsorshipMinisterio de Economía, Industria y Competitividad | Ref. MTM2016-79661-Pspa
dc.language.isoengspa
dc.publisherMathematicsspa
dc.relationinfo:eu-repo/grantAgreement/MINECO//MTM2016-79661-P/ES/HOMOLOGIA, HOMOTOPIA E INVARIANTES CATEGORICOS EN GRUPOS Y ALGEBRAS NO ASOCIATIVAS
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleLong dimodules and quasitriangular weak Hopf monoidsen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/math9040424
dc.identifier.editorhttps://www.mdpi.com/2227-7390/9/4/424spa
dc.publisher.departamentoMatemáticasspa
dc.publisher.departamentoMatemática aplicada IIspa
dc.publisher.grupoinvestigacionMatemáticasspa
dc.subject.unesco1201 Álgebraspa
dc.subject.unesco12 Matemáticasspa
dc.date.updated2021-12-02T09:52:53Z
dc.computerCitationpub_title=Mathematics|volume=9|journal_number=4|start_pag=424|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International