Show simple item record

dc.contributor.authorMiklusis, Donatas
dc.contributor.authorMarkevicius, Vytautas
dc.contributor.authorNavikas, Dangirutis
dc.contributor.authorCepenas, Mindaugas
dc.contributor.authorBalamutas, Juozas
dc.contributor.authorValinevicius, Algimantas
dc.contributor.authorZilys, Mindaugas
dc.contributor.authorCuiñas Gómez, Íñigo 
dc.contributor.authorKlimenta, Dardan
dc.contributor.authorAndriukaitis, Darius
dc.date.accessioned2021-12-15T12:58:54Z
dc.date.available2021-12-15T12:58:54Z
dc.date.issued2021-11-26
dc.identifier.citationSensors, 21(23): 7872 (2021)en
dc.identifier.issn14248220
dc.identifier.urihttp://hdl.handle.net/11093/2874
dc.description.abstractReliable cost-effective traffic monitoring stations are a key component of intelligent transportation systems (ITS). While modern surveillance camera systems provide a high amount of data, due to high installation price or invasion of drivers’ personal privacy, they are not the right technology. Therefore, in this paper we introduce a traffic flow parameterization system, using a built-in pavement sensing hub of a pair of AMR (anisotropic magneto resistance) magnetic field and MEMS (micro-electromechanical system) accelerometer sensors. In comparison with inductive loops, AMR magnetic sensors are significantly cheaper, have lower installation price and cause less intrusion to the road. The developed system uses magnetic signature to estimate vehicle speed and length. While speed is obtained from the cross-correlation method, a novel vehicle length estimation algorithm based on characterization of the derivative of magnetic signature is presented. The influence of signature filtering, derivative step and threshold parameter on estimated length is investigated. Further, accelerometer sensors are employed to detect when the wheel of vehicle passes directly over the sensor, which cause distorted magnetic signatures. Results show that even distorted signatures can be used for speed estimation, but it must be treated with a more robust method. The database during the real-word traffic and hazard environmental condition was collected over a 0.5-year period and used for method validation.en
dc.description.sponsorshipLietuvos Mokslo Taryba | Ref. S-MIP-21-34en
dc.language.isoengspa
dc.publisherSensorsspa
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleResearch of distorted vehicle magnetic signatures recognitions, for length estimation in real traffic conditionsen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/s21237872
dc.identifier.editorhttps://www.mdpi.com/1424-8220/21/23/7872spa
dc.publisher.departamentoTeoría do sinal e comunicaciónsspa
dc.publisher.grupoinvestigacionSistemas Radiospa
dc.subject.unesco3327 Tecnología de Los Sistemas de Transportespa
dc.subject.unesco3317.10 Ingeniería del Tráficospa
dc.subject.unesco3325 Tecnología de las Telecomunicacionesspa
dc.date.updated2021-12-14T11:46:48Z
dc.computerCitationpub_title=Sensors|volume=21|journal_number=23|start_pag=7872|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International