dc.contributor.author | Area Carracedo, Iván Carlos | |
dc.contributor.author | Nieto Roig, Juan José | |
dc.date.accessioned | 2021-12-22T11:56:09Z | |
dc.date.available | 2021-12-22T11:56:09Z | |
dc.date.issued | 2021-12-14 | |
dc.identifier.citation | Fractal and Fractional, 5(4): 273 (2021) | spa |
dc.identifier.issn | 25043110 | |
dc.identifier.uri | http://hdl.handle.net/11093/2906 | |
dc.description.abstract | In this paper, we consider the Prabhakar fractional logistic differential equation. By using appropriate limit relations, we recover some other logistic differential equations, giving representations of each solution in terms of a formal power series. Some numerical approximations are implemented by using truncated series. | en |
dc.description.sponsorship | Agencia Estatal de Investigación | Ref. PID2020-113275GB-I00 | spa |
dc.description.sponsorship | Xunta de Galicia | Ref. ED431C 2019/02 | spa |
dc.language.iso | eng | spa |
dc.publisher | Fractal and Fractional | spa |
dc.relation | info:eu-repo/grantAgreement/MCIN/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113275GB-I00/ES | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.title | Fractional-order logistic differential equation with Mittag–Leffler-type Kernel | en |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.identifier.doi | 10.3390/fractalfract5040273 | |
dc.identifier.editor | https://www.mdpi.com/2504-3110/5/4/273 | spa |
dc.publisher.departamento | Matemática aplicada II | spa |
dc.publisher.grupoinvestigacion | Grupo de Ingeniería Física | spa |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | spa |
dc.subject.unesco | 1206 Análisis Numérico | spa |
dc.date.updated | 2021-12-22T09:50:27Z | |
dc.computerCitation | pub_title=Fractal and Fractional|volume=5|journal_number=4|start_pag=273|end_pag= | spa |