Show simple item record

dc.contributor.authorArea Carracedo, Iván Carlos 
dc.contributor.authorNieto Roig, Juan José
dc.date.accessioned2021-12-22T11:56:09Z
dc.date.available2021-12-22T11:56:09Z
dc.date.issued2021-12-14
dc.identifier.citationFractal and Fractional, 5(4): 273 (2021)spa
dc.identifier.issn25043110
dc.identifier.urihttp://hdl.handle.net/11093/2906
dc.description.abstractIn this paper, we consider the Prabhakar fractional logistic differential equation. By using appropriate limit relations, we recover some other logistic differential equations, giving representations of each solution in terms of a formal power series. Some numerical approximations are implemented by using truncated series.en
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PID2020-113275GB-I00spa
dc.description.sponsorshipXunta de Galicia | Ref. ED431C 2019/02spa
dc.language.isoengspa
dc.publisherFractal and Fractionalspa
dc.relationinfo:eu-repo/grantAgreement/MCIN/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113275GB-I00/ES
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleFractional-order logistic differential equation with Mittag–Leffler-type Kernelen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/fractalfract5040273
dc.identifier.editorhttps://www.mdpi.com/2504-3110/5/4/273spa
dc.publisher.departamentoMatemática aplicada IIspa
dc.publisher.grupoinvestigacionGrupo de Ingeniería Físicaspa
dc.subject.unesco1202 Análisis y Análisis Funcionalspa
dc.subject.unesco1206 Análisis Numéricospa
dc.date.updated2021-12-22T09:50:27Z
dc.computerCitationpub_title=Fractal and Fractional|volume=5|journal_number=4|start_pag=273|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International