Show simple item record

dc.contributor.authorRosado, Daniela
dc.contributor.authorPerez Losada, Marcos
dc.contributor.authorAira Vieira, Manuel 
dc.contributor.authorDomínguez Martín, Jose Jorge 
dc.date.accessioned2021-12-30T11:03:44Z
dc.date.available2021-12-30T11:03:44Z
dc.date.issued2021-12-29
dc.identifier.citationMicroorganisms, 10(1): 65 (2022)spa
dc.identifier.issn20762607
dc.identifier.urihttp://hdl.handle.net/11093/2948
dc.description.abstractVermicomposting is the process of organic waste degradation through interactions between earthworms and microbes. A variety of organic wastes can be vermicomposted, producing a nutrient-rich final product that can be used as a soil biofertilizer. Giving the prolific invasive nature of the Australian silver wattle Acacia dealbata Link in Europe, it is important to find alternatives for its sustainable use. However, optimization of vermicomposting needs further comprehension of the fundamental microbial processes. Here, we characterized bacterial succession during the vermicomposting of silver wattle during 56 days using the earthworm species Eisenia andrei. We observed significant differences in α- and β-diversity between fresh silver wattle (day 0) and days 14 and 28, while the bacterial community seemed more stable between days 28 and 56. Accordingly, during the first 28 days, a higher number of taxa experienced significant changes in relative abundance. A microbiome core composed of 10 amplicon sequence variants was identified during the vermicomposting of silver wattle (days 14 to 56). Finally, predicted functional profiles of genes involved in cellulose metabolism, nitrification, and salicylic acid also changed significantly during vermicomposting. This study, hence, provides detailed insights of the bacterial succession occurring during vermicomposting of the silver wattle and the characteristics of its final product as a sustainable plant biofertilizer.en
dc.description.sponsorshipMinisterio de Economía y Competitividad de España | Ref. AGL2017-86813-Rspa
dc.description.sponsorshipEuropean Commission | Ref. H2020 LABPLAS_101003954spa
dc.language.isoengspa
dc.publisherMicroorganismsspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-86813-R/ES
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleBacterial succession during vermicomposting of silver wattle (Acacia dealbata Link)en
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/LABPLAS/101003954en
dc.identifier.doi10.3390/microorganisms10010065
dc.identifier.editorhttps://www.mdpi.com/2076-2607/10/1/65spa
dc.publisher.departamentoEcoloxía e bioloxía animalspa
dc.publisher.grupoinvestigacionECOLOXÍA ANIMALspa
dc.subject.unesco2401.06 Ecología Animalspa
dc.subject.unesco2414.90 Degradación de Residuos Vegetalesspa
dc.subject.unesco2414.08 Procesos Microbianosspa
dc.date.updated2021-12-30T09:03:32Z
dc.computerCitationpub_title=Microorganisms|volume=10|journal_number=1|start_pag=65|end_pag=spa
dc.referencesThis study was supported by the Spanish Ministerio de Economía y Competitividad (AGL2017-86813-R) and the UE program H2020 (LABPLAS_101003954). We thank Hugo Martínez and Alberto Da Silva for their help with vermicomposting, sample collection, and DNA extractionen


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International