dc.contributor.author | Zapatero Castrillo, Víctor | |
dc.contributor.author | Curty Alonso, Marcos | |
dc.date.accessioned | 2022-02-02T11:25:24Z | |
dc.date.available | 2022-02-02T11:25:24Z | |
dc.date.issued | 2019-11-28 | |
dc.identifier.citation | Scientific Reports, 9(1): 17749 (2019) | en |
dc.identifier.issn | 20452322 | |
dc.identifier.uri | http://hdl.handle.net/11093/3004 | |
dc.description.abstract | Besides being a beautiful idea, device-independent quantum key distribution (DIQKD) is probably the ultimate solution to defeat quantum hacking. Its security is based on a loophole-free violation of a Bell inequality, which results in a very limited maximum achievable distance. To overcome this limitation, DIQKD must be furnished with heralding devices like, for instance, qubit amplifiers, which can signal the arrival of a photon before the measurement settings are actually selected. In this way, one can decouple channel loss from the selection of the measurement settings and, consequently, it is possible to safely post-select the heralded events and discard the rest, which results in a significant enhancement of the achievable distance. In this work, we investigate photonic-based DIQKD assisted by two main types of qubit amplifiers in the finite data block size scenario, and study the resources—particularly, the detection efficiency of the photodetectors and the quality of the entanglement sources—that would be necessary to achieve long-distance DIQKD within a reasonable time frame of signal transmission. | en |
dc.description.sponsorship | Ministerio de Economía y Competitividad | Ref. TEC2014-54898-R | spa |
dc.description.sponsorship | Ministerio de Economía y Competitividad | Ref. TEC2017-88243-R | spa |
dc.language.iso | eng | spa |
dc.publisher | Scientific Reports | spa |
dc.relation | info:eu-repo/grantAgreement/MINECO//TEC2014-54898-R/ES/CRIPTOGRAFIA CUANTICA DE ALTA CAPACIDAD PARA REDES OPTICAS | |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación (PEICTI) 2013-2016/TEC2017-88243-R/ES/SEGURIDAD DE LAS IMPLEMENTACIONES DE SISTEMAS CUANTICOS DE DISTRIBUCION DE CLAVE CON SUPOSICIONES LAXAS | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.title | Long-distance device-independent quantum key distribution | en |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.relation.projectID | info:eu-repo/grantAgreement/EU/H2020/675662 | spa |
dc.identifier.doi | 10.1038/s41598-019-53803-0 | |
dc.identifier.editor | http://www.nature.com/articles/s41598-019-53803-0 | spa |
dc.publisher.departamento | Teoría do sinal e comunicacións | spa |
dc.publisher.grupoinvestigacion | Antenas, Radar e Comunicacións Ópticas | spa |
dc.subject.unesco | 3325 Tecnología de las Telecomunicaciones | spa |
dc.subject.unesco | 2210.23 Teoría Cuántica | spa |
dc.subject.unesco | 3311.04 Dispositivos Electroópticos | spa |
dc.date.updated | 2022-02-02T11:22:44Z | |
dc.computerCitation | pub_title=Scientific Reports|volume=9|journal_number=1|start_pag=17749|end_pag= | spa |
dc.references | We thank Rotem Arnon-Friedman for very useful discussions related to the security analysis. We thank the
Spanish Ministry of Economy and Competitiveness (MINECO), the Fondo Europeo de Desarrollo Regional
(FEDER) through grants TEC2014-54898-R and TEC2017-88243-R, and the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675662 (project
QCALL) for financial support. VZ gratefully acknowledges support from a FPU scholarship from the Spanish
Ministry of Education. | en |