Show simple item record

dc.contributor.authorAlonso Martinez, Laura 
dc.contributor.authorPicos Martín, Juan 
dc.contributor.authorArmesto González, Julia 
dc.date.accessioned2022-02-16T11:35:56Z
dc.date.available2022-02-16T11:35:56Z
dc.date.issued2022-02-01
dc.identifier.citationRemote Sensing, 14(3): 697 (2022)spa
dc.identifier.issn20724292
dc.identifier.urihttp://hdl.handle.net/11093/3069
dc.description.abstractMonitoring forest disturbances has become essential towards the design and tracking of sustainable forest management. Multiple methodologies have been developed to detect these disturbances. However, few studies have focused on the automatic detection of disturbance drivers, an essential task as each disturbance has different implications for the functioning of the ecosystem and associated management actions. Wildfires and harvesting are two of the major drivers of forest disturbances across different ecosystems. In this study, an automated methodology is presented to automatically distinguish between the two once the disturbance is detected, using the properties of its geometry and shape. A cluster analysis was performed to automatically individualize each disturbance and afterwards calculate its geometric properties. Using these properties, a decision tree was built that allowed for the distinction between wildfires and harvesting with an overall accuracy of 91%. This methodology and further research relating to it could pose an essential aid to national and international agencies for incorporating forest-disturbance-driver-related information into forest-focused reports.en
dc.description.sponsorshipXunta de Galiciaspa
dc.description.sponsorshipMinisterio de Universidades | Ref. FPU19/02054spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PID2019-111581RB-I00spa
dc.language.isoengspa
dc.publisherRemote Sensingspa
dc.relationinfo:eu-repo/grantAgreement/MICIU//FPU19/02054/ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111581RB-I00/ES/PALEOINTERFAZ: ELEMENTO ESTRATEGICO EN LA PREVENCION DE INCENDIOS FORESTALES. DESARROLLO DE METODOLOGIAS DE ANALISIS 3D Y MULTIESPECTRAL PARA LA GESTION INTEGRADA
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleAutomatic identification of forest disturbance drivers based on their geometric pattern in Atlantic forestsen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/rs14030697
dc.identifier.editorhttps://www.mdpi.com/2072-4292/14/3/697spa
dc.publisher.departamentoEnxeñaría dos recursos naturais e medio ambientespa
dc.publisher.grupoinvestigacionXestión Segura e Sostible de Recursos Mineraisspa
dc.publisher.grupoinvestigacionEnxeñería Agroforestalspa
dc.publisher.grupoinvestigacionXeotecnoloxías Aplicadasspa
dc.subject.unesco3106 Ciencia Forestalspa
dc.subject.unesco3106.08 Silviculturaspa
dc.subject.unesco3308 Ingeniería y Tecnología del Medio Ambientespa
dc.date.updated2022-02-16T08:28:03Z
dc.computerCitationpub_title=Remote Sensing|volume=14|journal_number=3|start_pag=697|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International