Cistus monspeliensis L. as a potential species for rehabilitation of soils with multielemental contamination under Mediterranean conditions
DATE:
2018-03
UNIVERSAL IDENTIFIER: http://hdl.handle.net/11093/3224
EDITED VERSION: http://link.springer.com/10.1007/s11356-017-0957-3
DOCUMENT TYPE: article
ABSTRACT
The Iberian Pyrite Belt (IPB; SW of the Iberian Peninsula) is one of the most important volcanogenic massive sulphide ore deposits in the world. Cistus monspeliensis L. is a native woody shrub that grows spontaneously in non-contaminated soils as well as in soils with multielemental contamination from the IPB. In this study, different ecophysiological parameters of C. monspeliensis growing in soils with different levels of metal(loid)s were evaluated to assess the potential of this species for revegetation of degraded areas. Composite samples of plants and rhizosphere soils were sampled in São Domingos and Lousal mines and in a reference area without soil contamination (Pomarão, Portugal) (Portuguese sector of IPB). Classical characterisation of the soils and quantification of their total and available metal(loid) concentrations were done. Multielemental concentration was determined in plants (shoots and roots). Ecophysiological parameters were also determined in shoots: concentrations of pigments (chlorophylls, anthocyanins and carotenoids), antioxidants (glutathione and ascorbate) and hydrogen peroxide as well as activities of several antioxidative enzymes. Although mining soils present high total concentrations of potentially hazardous elements, their available fractions were low and similar among studied areas. Soil pH as well as concentrations of extractable P, total concentrations of As, Cd and Ni and concentrations of Cu, Cr, Ni, Pb and Sb in the soil available fraction differentiate the studied areas. Only concentrations of Cd, Pb and Sb in roots and shoots were explained by the concentrations of the same elements in the soil available fraction. Although the majority of elements were translocated from roots to shoots, the shoots concentrations were below the toxic values for domestic animals and only As, Mn and Zn reached phytotoxic concentrations. Ecophysiological parameters were similar independently of the studied area. Due to its adaptability, tolerance and standard plant features, C. monspeliensis is a good choice for rehabilitation of soils with multielemental contamination under similar climatic characteristics.