Show simple item record

dc.contributor.authorCabaleiro Álvarez, David 
dc.contributor.authorColla, L.
dc.contributor.authorBarison, Simona
dc.contributor.authorLugo Latas, Luis 
dc.contributor.authorFedele, L.
dc.contributor.authorBobbo, Sergio
dc.date.accessioned2022-03-11T13:15:40Z
dc.date.available2022-03-11T13:15:40Z
dc.date.issued2017-01-19
dc.identifier.citationNanoscale Research Letters, 12, 53 (2017)spa
dc.identifier.issn19317573
dc.identifier.issn1556276X
dc.identifier.urihttp://hdl.handle.net/11093/3244
dc.description.abstractThis research aims at studying the stability and thermophysical properties of nanofluids designed as dispersions of sulfonic acid-functionalized graphene nanoplatelets in an (ethylene glycol + water) mixture at (10:90)% mass ratio. Nanofluid preparation conditions were defined through a stability analysis based on zeta potential and dynamic light scattering (DLS) measurements. Thermal conductivity, dynamic viscosity, and density were experimentally measured in the temperature range from 283.15 to 343.15 K and nanoparticle mass concentrations of up to 0.50% by using a transient plate source, a rotational rheometer, and a vibrating-tube technique, respectively. Thermal conductivity enhancements reach up to 5% without a clear effect of temperature while rheological tests evidence a Newtonian behavior of the studied nanofluids. Different equations such as the Nan, Vogel-Fulcher-Tamman (VFT), or Maron-Pierce (MP) models were utilized to describe the temperature or nanoparticle concentration dependences of thermal conductivity and viscosity. Finally, different figures of merit based on the experimental values of thermophysical properties were also used to compare the heat transfer capability and pumping power between nanofluids and base fluid.en
dc.description.sponsorshipMinisterio de Economía y Competitividad | Ref. ENE2014-55489-C2-2-Rspa
dc.language.isoengen
dc.publisherNanoscale Research Lettersspa
dc.relationinfo:eu-repo/grantAgreement/MINECO//ENE2014-55489-C2-2-R/ES/DISEÑO Y DESARROLLO DE NANOFLUIDOS PARA LA PRODUCCION Y EL ALMACENAMIENTO DE ENERGIA
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleHeat transfer capability of (ethylene glycol + water)-based nanofluids containing graphene nanoplatelets: design and thermophysical profileen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1186/s11671-016-1806-x
dc.identifier.editorhttp://nanoscalereslett.springeropen.com/articles/10.1186/s11671-016-1806-xspa
dc.publisher.departamentoFísica aplicadaspa
dc.publisher.grupoinvestigacionFísica Aplicada 2spa
dc.subject.unesco2204 Física de Fluidosspa
dc.subject.unesco2213.02 Física de la Transmisión del Calorspa
dc.subject.unesco3328.16 Transferencia de Calorspa
dc.date.updated2022-03-11T09:09:04Z
dc.computerCitationpub_title=Nanoscale Research Letters|volume=12|journal_number=|start_pag=53|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International