Show simple item record

dc.contributor.authorTerra Matos, Joana 
dc.contributor.authorTeixeira, Marta Oliveira
dc.contributor.authorSantos Pereira, Cátia
dc.contributor.authorNoronha, Henrique
dc.contributor.authorDomingues, Lucília
dc.contributor.authorSieiro Vázquez, María del Carmen 
dc.contributor.authorGerós, Hernâni
dc.contributor.authorChaves, Susana Rodrigues
dc.contributor.authorSousa, Maria João
dc.contributor.authorCôrte Real, Manuela
dc.date.accessioned2022-03-16T11:01:38Z
dc.date.available2022-03-16T11:01:38Z
dc.date.issued2022-01-14
dc.identifier.citationJournal of Fungi, 8(1): 78 (2022)en
dc.identifier.issn2309608X
dc.identifier.urihttp://hdl.handle.net/11093/3258
dc.description.abstractYeast-based bioethanol production from lignocellulosic hydrolysates (LH) is an attractive and sustainable alternative for biofuel production. However, the presence of acetic acid (AA) in LH is still a major problem. Indeed, above certain concentrations, AA inhibits yeast fermentation and triggers a regulated cell death (RCD) process mediated by the mitochondria and vacuole. Understanding the mechanisms involved in AA-induced RCD (AA-RCD) may thus help select robust fermentative yeast strains, providing novel insights to improve lignocellulosic ethanol (LE) production. Herein, we hypothesized that zinc vacuolar transporters are involved in vacuole-mediated AA-RCD, since zinc enhances ethanol production and zinc-dependent catalase and superoxide dismutase protect from AA-RCD. In this work, zinc limitation sensitized wild-type cells to AA-RCD, while zinc supplementation resulted in a small protective effect. Cells lacking the vacuolar zinc transporter Zrt3 were highly resistant to AA-RCD, exhibiting reduced vacuolar dysfunction. Moreover, zrt3Δ cells displayed higher ethanol productivity than their wild-type counterparts, both when cultivated in rich medium with AA (0.29 g L−1 h−1 versus 0.11 g L−1 h−1) and in an LH (0.73 g L−1 h−1 versus 0.55 g L−1 h−1). Overall, the deletion of ZRT3 emerges as a promising strategy to increase strain robustness in LE industrial production.en
dc.description.sponsorshipFundação para a Ciência e Tecnologia | Ref. UIDB/04050/2020 - PE 20-23spa
dc.description.sponsorshipFundação para a Ciência e Tecnologia | Ref. UIDB/04469/2020spa
dc.description.sponsorshipFundação para a Ciência e Tecnologia | Ref. PD/BD/128032/2016spa
dc.description.sponsorshipInterreg España—Portugal | Ref. 0688_BIOVINO_6_Espa
dc.language.isoengspa
dc.publisherJournal of Fungispa
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleSaccharomyces cerevisiae cells lacking the zinc vacuolar transporter Zrt3 display improved ethanol productivity in lignocellulosic hydrolysatesen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/jof8010078
dc.identifier.editorhttps://www.mdpi.com/2309-608X/8/1/78spa
dc.publisher.departamentoBioloxía funcional e ciencias da saúdespa
dc.subject.unesco2302 Bioquímicaspa
dc.subject.unesco3302 Tecnología Bioquímicaspa
dc.date.updated2022-03-16T08:25:05Z
dc.computerCitationpub_title=Journal of Fungi|volume=8|journal_number=1|start_pag=78|end_pag=spa
dc.referencesThe authors acknowledge Helena Pereira for constructing the pRS413-Pep4-mCherry plasmid and Sara L. Baptista for the preparation of vine prune residue autohydrolysis liquors. BIOVINO project (0688_BIOVINO_6_E) funded by INTERREG España—Portugal and European Regional Development Fund (ERDF) is acknowledged for the supply of vine prune residues.en


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International