Show simple item record

dc.contributor.authorVilares Ferro, Manuel 
dc.contributor.authorDarriba Bilbao, Victor Manuel 
dc.contributor.authorVilares Ferro, Jesús
dc.date.accessioned2022-05-30T07:55:20Z
dc.date.available2022-05-30T07:55:20Z
dc.date.issued2022-11
dc.identifier.citationJournal of Computer and System Sciences, 129, 39-61 (2022)spa
dc.identifier.issn00220000
dc.identifier.urihttp://hdl.handle.net/11093/3496
dc.descriptionFinanciado para publicación en acceso aberto: Universidade de Vigo/CISUG
dc.description.abstractNon-active adaptive sampling is a way of building machine learning models from a training data base which are supposed to dynamically and automatically derive guaranteed sample size. In this context and regardless of the strategy used in both scheduling and generating of weak predictors, a proposal for calculating absolute convergence and error thresholds is described. We not only make it possible to establish when the quality of the model no longer increases, but also supplies a proximity condition to estimate in absolute terms how close it is to achieving such a goal, thus supporting decision making for fine-tuning learning parameters in model selection. The technique proves its correctness and completeness with respect to our working hypotheses, in addition to strengthening the robustness of the sampling scheme. Tests meet our expectations and illustrate the proposal in the domain of natural language processing, taking the generation of part-of-speech taggers as case study.eng
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. TIN2017-85160-C2-1-Rspa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. TIN2017-85160-C2-2-Rspa
dc.description.sponsorshipAgencia Estatal de Investigación | PID2020-113230RB-C21spa
dc.description.sponsorshipAgencia Estatal de Investigación | PID2020-113230RB-C22spa
dc.description.sponsorshipXunta de Galicia | Ref. ED431C 2018/50spa
dc.language.isoengeng
dc.publisherJournal of Computer and System Sciencesspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-85160-C2-1-R/ES/AVANCES EN NUEVOS SISTEMAS DE EXTRACCION DE RESPUESTAS CON ANALISIS SEMANTICO Y APRENDIZAJE PROFUNDO
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-85160-C2-2-R/ES/AVANCES EN NUEVOS SISTEMAS DE EXTRACCION DE RESPUESTAS CON ANALISIS SEMANTICO Y APRENDIZAJE PROFUNDO
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113230RB-C21/ES/MODELOS MULTITAREA DE ETIQUETADO SECUENCIAL PARA EL RECONOCIMIENTO DE ENTIDADES ENRIQUECIDO CON INFORMACION LINGUISTICA: SINTAXIS E INTEGRACION MULTITAREA (SCANNER-UDC)
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113230RB-C22/ES/SEQUENCE LABELING MULTITASK MODELS FOR LINGUISTICALLY ENRICHED NER: SEMANTICS AND DOMAIN ADAPTATION (SCANNER-UVIGO)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleAbsolute convergence and error thresholds in non-active adaptive samplingeng
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1016/j.jcss.2022.05.002
dc.identifier.editorhttps://linkinghub.elsevier.com/retrieve/pii/S002200002200040Xspa
dc.publisher.departamentoInformáticaspa
dc.publisher.grupoinvestigacionCOmputational LEarnigspa
dc.subject.unesco3304.11 Diseño de Sistemas de Cálculospa
dc.date.updated2022-05-25T09:26:02Z
dc.computerCitationpub_title=Journal of Computer and System Sciences|volume=129|journal_number=|start_pag=39|end_pag=61spa


Files in this item

[PDF]

    Show simple item record

    Attribution-NonCommercial-NoDerivatives 4.0 International
    Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International