dc.contributor.author | Vilares Ferro, Manuel | |
dc.contributor.author | Darriba Bilbao, Victor Manuel | |
dc.contributor.author | Vilares Ferro, Jesús | |
dc.date.accessioned | 2022-05-30T07:55:20Z | |
dc.date.available | 2022-05-30T07:55:20Z | |
dc.date.issued | 2022-11 | |
dc.identifier.citation | Journal of Computer and System Sciences, 129, 39-61 (2022) | spa |
dc.identifier.issn | 00220000 | |
dc.identifier.uri | http://hdl.handle.net/11093/3496 | |
dc.description | Financiado para publicación en acceso aberto: Universidade de Vigo/CISUG | |
dc.description.abstract | Non-active adaptive sampling is a way of building machine learning models from a training data base which are supposed to dynamically and automatically derive guaranteed sample size. In this context and regardless of the strategy used in both scheduling and generating of weak predictors, a proposal for calculating absolute convergence and error thresholds is described. We not only make it possible to establish when the quality of the model no longer increases, but also supplies a proximity condition to estimate in absolute terms how close it is to achieving such a goal, thus supporting decision making for fine-tuning learning parameters in model selection. The technique proves its correctness and completeness with respect to our working hypotheses, in addition to strengthening the robustness of the sampling scheme. Tests meet our expectations and illustrate the proposal in the domain of natural language processing, taking the generation of part-of-speech taggers as case study. | eng |
dc.description.sponsorship | Agencia Estatal de Investigación | Ref. TIN2017-85160-C2-1-R | spa |
dc.description.sponsorship | Agencia Estatal de Investigación | Ref. TIN2017-85160-C2-2-R | spa |
dc.description.sponsorship | Agencia Estatal de Investigación | PID2020-113230RB-C21 | spa |
dc.description.sponsorship | Agencia Estatal de Investigación | PID2020-113230RB-C22 | spa |
dc.description.sponsorship | Xunta de Galicia | Ref. ED431C 2018/50 | spa |
dc.language.iso | eng | eng |
dc.publisher | Journal of Computer and System Sciences | spa |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-85160-C2-1-R/ES/AVANCES EN NUEVOS SISTEMAS DE EXTRACCION DE RESPUESTAS CON ANALISIS SEMANTICO Y APRENDIZAJE PROFUNDO | |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-85160-C2-2-R/ES/AVANCES EN NUEVOS SISTEMAS DE EXTRACCION DE RESPUESTAS CON ANALISIS SEMANTICO Y APRENDIZAJE PROFUNDO | |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113230RB-C21/ES/MODELOS MULTITAREA DE ETIQUETADO SECUENCIAL PARA EL RECONOCIMIENTO DE ENTIDADES ENRIQUECIDO CON INFORMACION LINGUISTICA: SINTAXIS E INTEGRACION MULTITAREA (SCANNER-UDC) | |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113230RB-C22/ES/SEQUENCE LABELING MULTITASK MODELS FOR LINGUISTICALLY ENRICHED NER: SEMANTICS AND DOMAIN ADAPTATION (SCANNER-UVIGO) | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.title | Absolute convergence and error thresholds in non-active adaptive sampling | eng |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.identifier.doi | 10.1016/j.jcss.2022.05.002 | |
dc.identifier.editor | https://linkinghub.elsevier.com/retrieve/pii/S002200002200040X | spa |
dc.publisher.departamento | Informática | spa |
dc.publisher.grupoinvestigacion | COmputational LEarnig | spa |
dc.subject.unesco | 3304.11 Diseño de Sistemas de Cálculo | spa |
dc.date.updated | 2022-05-25T09:26:02Z | |
dc.computerCitation | pub_title=Journal of Computer and System Sciences|volume=129|journal_number=|start_pag=39|end_pag=61 | spa |