Show simple item record

dc.contributor.authorOtero Martinez, Clara 
dc.contributor.authorYe, Junzhi
dc.contributor.authorSung, Jooyoung
dc.contributor.authorPastoriza Santos, Isabel 
dc.contributor.authorPérez Juste, Jorge 
dc.contributor.authorXia, Zhiguo
dc.contributor.authorRao, Akshay
dc.contributor.authorHoye, Robert L. Z.
dc.contributor.authorPolavarapu , Lakshminarayana 
dc.date.accessioned2022-06-09T12:22:34Z
dc.date.available2022-06-09T12:22:34Z
dc.date.issued2022-03-10
dc.identifier.citationAdvanced Materials, 34(10): 2107105 (2022)spa
dc.identifier.issn09359648
dc.identifier.issn15214095
dc.identifier.urihttp://hdl.handle.net/11093/3556
dc.descriptionFinanciado para publicación en acceso aberto: Universidade de Vigo/CISUG
dc.description.abstractColloidal metal-halide perovskite nanocrystals (MHP NCs) are gaining significant attention for a wide range of optoelectronics applications owing to their exciting properties, such as defect tolerance, near-unity photoluminescence quantum yield, and tunable emission across the entire visible wavelength range. Although the optical properties of MHP NCs are easily tunable through their halide composition, they suffer from light-induced halide phase segregation that limits their use in devices. However, MHPs can be synthesized in the form of colloidal nanoplatelets (NPls) with monolayer (ML)-level thickness control, exhibiting strong quantum confinement effects, and thus enabling tunable emission across the entire visible wavelength range by controlling the thickness of bromide or iodide-based lead-halide perovskite NPls. In addition, the NPls exhibit narrow emission peaks, have high exciton binding energies, and a higher fraction of radiative recombination compared to their bulk counterparts, making them ideal candidates for applications in light-emitting diodes (LEDs). This review discusses the state-of-the-art in colloidal MHP NPls: synthetic routes, thickness-controlled synthesis of both organic–inorganic hybrid and all-inorganic MHP NPls, their linear and nonlinear optical properties (including charge-carrier dynamics), and their performance in LEDs. Furthermore, the challenges associated with their thickness-controlled synthesis, environmental and thermal stability, and their application in making efficient LEDs are discussed.en
dc.description.sponsorshipAgencia Estatal de Investigación https://doi.org/10.13039/501100011033 | Ref. PID2020‐117371RA‐I00spa
dc.description.sponsorshipXunta de Galicia https://doi.org/10.13039/501100010801 | Ref. ED431F2021/05spa
dc.description.sponsorshipRoyal Academy of Engineering https://doi.org/10.13039/501100000287 | Ref. RF∖201718∖1701spa
dc.description.sponsorshipMinisterio de Ciencia e Innovación | Ref. RYC2018-026103-I
dc.description.sponsorshipXunta de Galicia | Ref. GRC ED431C2020/09
dc.language.isoengspa
dc.publisherAdvanced Materialsspa
dc.relationinfo:eu-repo/grantAgreement/MICINN/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2018-026103-I/ES
dc.relationinfo:eu-repo/grantAgreement/AEI//PID2020-117371RA-I00/ES/SINTESIS DE NANOCRISTALES QUIRALES DE HALUROS DE PEROVSKITAS CON COMPOSICION Y MORFOLOGIA CONTROLADA Y SU AUTOENSAMBLAJE PARA SUPERFLUORESCENCIA POLARIZADA CIRCULARMENTE
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleColloidal metal‐halide perovskite nanoplatelets: thickness‐controlled synthesis, properties, and application in light‐emitting diodesen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1002/adma.202107105
dc.identifier.editorhttps://onlinelibrary.wiley.com/doi/10.1002/adma.202107105spa
dc.publisher.departamentoQuímica Físicaspa
dc.subject.unesco2307 Química Físicaspa
dc.date.updated2022-06-08T16:42:08Z
dc.computerCitationpub_title=Advanced Materials|volume=34|journal_number=10|start_pag=2107105|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International