Show simple item record

dc.contributor.authorAlgarra Cajide, Iago 
dc.contributor.authorNieto Muñiz, Raquel Olalla 
dc.contributor.authorRamos, Alexandre M.
dc.contributor.authorEiras Barca, Jorge 
dc.contributor.authorTrigo, Ricardo M.
dc.contributor.authorGimeno Presa, Luis 
dc.date.accessioned2022-10-06T12:00:14Z
dc.date.available2022-10-06T12:00:14Z
dc.date.issued2020-10-08
dc.identifier.citationNature Communications, 11(1): 5082 (2020)spa
dc.identifier.issn20411723
dc.identifier.urihttp://hdl.handle.net/11093/3921
dc.description.abstractOne of the most robust signals of climate change is the relentless rise in global mean surface temperature, which is linked closely with the water-holding capacity of the atmosphere. A more humid atmosphere will lead to enhanced moisture transport due to, among other factors, an intensification of atmospheric rivers (ARs) activity, which are an important mechanism of moisture advection from subtropical to extra-tropical regions. Here we show an enhanced evapotranspiration rates in association with landfalling atmospheric river events. These anomalous moisture uptake (AMU) locations are identified on a global scale. The interannual variability of AMU displays a significant increase over the period 1980-2017, close to the Clausius-Clapeyron (CC) scaling, at 7 % per degree of surface temperature rise. These findings are consistent with an intensification of AR predicted by future projections. Our results also reveal generalized significant increases in AMU at the regional scale and an asymmetric supply of oceanic moisture, in which the maximum values are located over the region known as the Western Hemisphere Warm Pool (WHWP) centred on the Gulf of Mexico and the Caribbean Seaen
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades | Ref. RTI2018-095772-B-I00spa
dc.description.sponsorshipXunta de Galicia | Ref. ED431C 2017/64-GRCspa
dc.description.sponsorshipMinisterio de Economía y Competitividad | Ref. CGL2015-65141-Rspa
dc.description.sponsorshipXunta de Galicia | Ref. EDB481B 2018/069spa
dc.description.sponsorshipFundação para a Ciência e a Tecnologia | Ref. PTDC/CTA-MET/29233/2017spa
dc.description.sponsorshipFundação para a Ciência e a Tecnologia | Ref. CEECIND/00027/2017spa
dc.language.isoengspa
dc.publisherNature Communicationsspa
dc.relationinfo:eu-repo/grantAgreement/AEI/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095772-B-I00/ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/CGL2015-65141-R/ES
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleSignificant increase of global anomalous moisture uptake feeding landfalling Atmospheric Riversen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1038/s41467-020-18876-w
dc.identifier.editorhttps://www.nature.com/articles/s41467-020-18876-wspa
dc.publisher.departamentoFísica aplicadaspa
dc.publisher.grupoinvestigacionEphysLabspa
dc.subject.unesco2501.06 Dinámica Atmosféricaspa
dc.subject.unesco2508 Hidrologíaspa
dc.subject.unesco2501.10 Estructura Atmosféricaspa
dc.subject.unesco2501.22 Física de las Precipitacionesspa
dc.date.updated2022-10-06T08:45:06Z
dc.computerCitationpub_title=Nature Communications|volume=11|journal_number=1|start_pag=5082|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International