Show simple item record

dc.contributor.authorPalmer, Samuel J
dc.contributor.authorXiao, Xiaofei
dc.contributor.authorPazos Pérez, Nicolás
dc.contributor.authorGuerrini, Luca
dc.contributor.authorCorrea Duarte, Miguel Ángel 
dc.contributor.authorMaier, Stefan A
dc.contributor.authorCraster, Richard V
dc.contributor.authorÁlvarez Puebla, Ramón A
dc.contributor.authorGiannini, Vincenzo
dc.date.accessioned2022-11-08T12:21:20Z
dc.date.available2022-11-08T12:21:20Z
dc.date.issued2019-05-09
dc.identifier.citationNature Communications, 10(1): 2118 (2019)spa
dc.identifier.issn20411723
dc.identifier.urihttp://hdl.handle.net/11093/4030
dc.description.abstractThe design of achromatic optical components requires materials with high transparency and low dispersion. We show that although metals are highly opaque, densely packed arrays of metallic nanoparticles can be more transparent to infrared radiation than dielectrics such as germanium, even when the arrays are over 75% metal by volume. Such arrays form effective dielectrics that are virtually dispersion-free over ultra-broadband ranges of wavelengths from microns up to millimeters or more. Furthermore, the local refractive indices may be tuned by altering the size, shape, and spacing of the nanoparticles, allowing the design of gradient-index lenses that guide and focus light on the microscale. The electric field is also strongly concentrated in the gaps between the metallic nanoparticles, and the simultaneous focusing and squeezing of the electric field produces strong ‘doubly-enhanced’ hotspots which could boost measurements made using infrared spectroscopy and other non-linear processes over a broad range of frequencies.en
dc.description.sponsorshipMinisterio de Economía | Ref. CTM2014-58481Rspa
dc.description.sponsorshipMinisterio de Economía | Ref. CTM2017-84050Rspa
dc.description.sponsorshipMinisterio de Economía | Ref. CTQ2017-88648Rspa
dc.description.sponsorshipMinisterio de Economía | Ref. RYC-2015-19107spa
dc.description.sponsorshipMinisterio de Economía | Ref. RYC2016-20331spa
dc.description.sponsorshipXunta de Galicia | Ref. EM2014/035spa
dc.description.sponsorshipConsejo Superior de Investigaciones Científicasspa
dc.language.isoengspa
dc.publisherNature Communicationsspa
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTM2014-58481-R/ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/CTM2017-84050-R/ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/CTQ2017-88648-R/ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/RYC-2015-19107/ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/RYC-2016-20331/ES
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleExtraordinarily transparent compact metallic metamaterialsen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1038/s41467-019-09939-8
dc.identifier.editorhttp://www.nature.com/articles/s41467-019-09939-8spa
dc.publisher.departamentoQuímica Físicaspa
dc.publisher.grupoinvestigacionTEAM NANO TECH (Grupo de Nanotecnoloxía)spa
dc.subject.unesco3312 Tecnología de Materialesspa
dc.subject.unesco3303 Ingeniería y Tecnología Químicasspa
dc.date.updated2022-11-08T12:20:10Z
dc.computerCitationpub_title=Nature Communications|volume=10|journal_number=1|start_pag=2118|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International