Coupling of an SPH-based solver with a multiphysics library
DATE:
2023-02
UNIVERSAL IDENTIFIER: http://hdl.handle.net/11093/4054
EDITED VERSION: https://linkinghub.elsevier.com/retrieve/pii/S0010465522003009
UNESCO SUBJECT: 2204.04 Mecánica de Fluidos
DOCUMENT TYPE: article
ABSTRACT
A two-way coupling between the Smoothed Particle Hydrodynamics-based (SPH) code with a multiphysics library to solve complex fluid-solid interaction problems is proposed. This work provides full access to the package for the use of this coupling by releasing the source code, completed with guidelines for its compilation and utilization, and self-contained template setups for practical uses of the novel implemented features, is provided here. The presented coupling expands the applicability of two different solvers allowing to simulate fluids, multibody systems, collisions with frictional contacts using either non-smooth contact (NSC) or smooth contact (SMC) methods, all integrated under the same framework. The fluid solver is the open-source code DualSPHysics, highly optimised for simulating free-surface phenomena and structure interactions, uniquely positioned as a general-purpose Computational Fluid Dynamics (CFD) software with a GPU-accelerated solver. Mechanical systems that comprise collision detection and/or multibody dynamics are solved by the multiphysics library Project Chrono, which uses a Discrete Element Method (DEM). Therefore, this SPH-DEM coupling approach can manage interactions between fluid and complex multibody systems with relative constraints, springs, or mechanical joints.