Properties of the CsI(Tl) detector elements of the CALIFA detector
Knyazev, A.; Park, J.; Golubev, P.; Cederkäll, J.; Álvarez Pol, Héctor; Cabanelas, P.; Casarejos Ruiz, Enrique; Causeret, L.; Cortina Gil, D.; Díaz Fernández, P.; Feijoo, M.; Galaviz, D.; Galiana, E.; Gernhäuser, R.; Hartig, A. L.; Heinz, A.; Heiss, B.; Ignatov, A.; Johansson, H.; Klenze, P.; Kröll, T.; Nilsson, T.; Perea, A.; Rhee, H.-B.; Tengblad, O.; Teubig, P.
DATE:
2019-10-01
UNIVERSAL IDENTIFIER: http://hdl.handle.net/11093/4196
EDITED VERSION: https://linkinghub.elsevier.com/retrieve/pii/S0168900219308903
UNESCO SUBJECT: 2207 Física Atómica y Nuclear ; 3313 Tecnología E Ingeniería Mecánicas ; 2209.11 Luz
DOCUMENT TYPE: article
ABSTRACT
In the R3B experiment at FAIR, charged particles with energies up to 600 MeV and forward boosted γ-rays with energies up to 20 MeV need to be detected in scattering experiments. Calorimeters for nuclear physics experiments of this kind, using relativistic radioactive ion beams, require high energy resolution and high efficiency for simultaneous detection of strongly Doppler shifted γ-rays and high-energy charged particles. A calorimeter design that can meet these requirements, using CsI(Tl) scintillators, results in detector elements that may exhibit light output variations with crystal depth, which can limit the attainable resolution. In this paper we present results from a systematic study of 478 detector modules of CALIFA, the R3B calorimeter, in order to determine and minimize such variations. To facilitate further systematic studies we also present results for the total absorption length of the scintillation light, using spectrophotometry, light crosstalk between adjacent detector modules, and surface topography of the CsI(Tl) crystals from atomic force microscopy.