Scan planning and route optimization for control of execution of as-designed BIM
FECHA:
2018-09-19
IDENTIFICADOR UNIVERSAL: http://hdl.handle.net/11093/4270
TIPO DE DOCUMENTO: article
RESUMEN
Abstract. Scan-to-BIM systems have been recently proposed for the dimensional and quality assessment of as-built construction components with planned works. The procedure is generally based on the geometric alignment and comparison of as-built laser scans with as-designed BIM models. A major concern in Scan-to-BIM procedures is point cloud quality in terms of data completeness and consequently, the scanning process should be designed in order to obtain a full coverage of the scene while avoiding major occlusions. This work proposes a method to optimize the number and scan positions for Scan-to-BIM procedures following stop & go scanning. The method is based on a visibility analysis using a ray-tracing algorithm. In addition, the optimal route between scan positions is formulated as a travelling salesman problem and solved using a suboptimal ant colony optimization algorithm. The distribution of candidate positions follows a grid-based structure, although other distributions based on triangulation or tessellation can be implemented to reduce the number of candidate positions and processing time.