dc.contributor.author | Vilares Ferro, Manuel | |
dc.contributor.author | Doval Mosquera, Yerai | |
dc.contributor.author | Ribadas Pena, Francisco Jose | |
dc.contributor.author | Darriba Bilbao, Victor Manuel | |
dc.date.accessioned | 2022-12-22T09:28:49Z | |
dc.date.available | 2022-12-22T09:28:49Z | |
dc.date.issued | 2023-02 | |
dc.identifier.citation | Neural Networks, 159, 109-124 (2023) | spa |
dc.identifier.issn | 08936080 | |
dc.identifier.uri | http://hdl.handle.net/11093/4277 | |
dc.description | Financiado para publicación en acceso aberto: Universidade de Vigo/CISUG | |
dc.description | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-85160-C2-2-R/ES/AVANCES EN NUEVOS SISTEMAS DE EXTRACCION DE RESPUESTAS CON ANALISIS SEMANTICO Y APRENDIZAJE PROFUNDO | |
dc.description | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113230RB-C22/ES/SEQUENCE LABELING MULTITASK MODELS FOR LINGUISTICALLY ENRICHED NER: SEMANTICS AND DOMAIN ADAPTATION (SCANNER-UVIGO) | |
dc.description.abstract | In order to minimize the generalization error in neural networks, a novel technique to identify
overfitting phenomena when training the learner is formally introduced. This enables support of a
reliable and trustworthy early stopping condition, thus improving the predictive power of that type
of modeling. Our proposal exploits the correlation over time in a collection of online indicators,
namely characteristic functions for indicating if a set of hypotheses are met, associated with a range of
independent stopping conditions built from a canary judgment to evaluate the presence of overfitting.
That way, we provide a formal basis for decision making in terms of interrupting the learning process.
As opposed to previous approaches focused on a single criterion, we take advantage of subsidiarities
between independent assessments, thus seeking both a wider operating range and greater diagnostic
reliability. With a view to illustrating the effectiveness of the halting condition described, we choose
to work in the sphere of natural language processing, an operational continuum increasingly based on
machine learning. As a case study, we focus on parser generation, one of the most demanding and
complex tasks in the domain. The selection of cross-validation as a canary function enables an actual
comparison with the most representative early stopping conditions based on overfitting identification,
pointing to a promising start toward an optimal bias and variance control. | spa |
dc.description.sponsorship | Agencia Estatal de Investigación | Ref. TIN2017-85160-C2-2-R | spa |
dc.description.sponsorship | Agencia Estatal de Investigación | Ref. PID2020-113230RB-C22 | spa |
dc.description.sponsorship | Xunta de Galicia | Ref. ED431C 2018/50 | spa |
dc.language.iso | eng | spa |
dc.publisher | Neural Networks | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.title | Early stopping by correlating online indicators in neural networks | en |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.identifier.doi | 10.1016/j.neunet.2022.11.035 | |
dc.identifier.editor | https://linkinghub.elsevier.com/retrieve/pii/S0893608022004920 | spa |
dc.publisher.departamento | Informática | spa |
dc.publisher.grupoinvestigacion | COmputational LEarnig | spa |
dc.subject.unesco | 1203.04 Inteligencia Artificial | spa |
dc.date.updated | 2022-12-21T18:58:26Z | |
dc.computerCitation | pub_title=Neural Networks|volume=159|journal_number=|start_pag=109|end_pag=124 | spa |