Show simple item record

dc.contributor.authorVilares Ferro, Manuel 
dc.contributor.authorDoval Mosquera, Yerai 
dc.contributor.authorRibadas Pena, Francisco Jose 
dc.contributor.authorDarriba Bilbao, Victor Manuel 
dc.date.accessioned2022-12-22T09:28:49Z
dc.date.available2022-12-22T09:28:49Z
dc.date.issued2023-02
dc.identifier.citationNeural Networks, 159, 109-124 (2023)spa
dc.identifier.issn08936080
dc.identifier.urihttp://hdl.handle.net/11093/4277
dc.descriptionFinanciado para publicación en acceso aberto: Universidade de Vigo/CISUG
dc.descriptioninfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-85160-C2-2-R/ES/AVANCES EN NUEVOS SISTEMAS DE EXTRACCION DE RESPUESTAS CON ANALISIS SEMANTICO Y APRENDIZAJE PROFUNDO
dc.descriptioninfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113230RB-C22/ES/SEQUENCE LABELING MULTITASK MODELS FOR LINGUISTICALLY ENRICHED NER: SEMANTICS AND DOMAIN ADAPTATION (SCANNER-UVIGO)
dc.description.abstractIn order to minimize the generalization error in neural networks, a novel technique to identify overfitting phenomena when training the learner is formally introduced. This enables support of a reliable and trustworthy early stopping condition, thus improving the predictive power of that type of modeling. Our proposal exploits the correlation over time in a collection of online indicators, namely characteristic functions for indicating if a set of hypotheses are met, associated with a range of independent stopping conditions built from a canary judgment to evaluate the presence of overfitting. That way, we provide a formal basis for decision making in terms of interrupting the learning process. As opposed to previous approaches focused on a single criterion, we take advantage of subsidiarities between independent assessments, thus seeking both a wider operating range and greater diagnostic reliability. With a view to illustrating the effectiveness of the halting condition described, we choose to work in the sphere of natural language processing, an operational continuum increasingly based on machine learning. As a case study, we focus on parser generation, one of the most demanding and complex tasks in the domain. The selection of cross-validation as a canary function enables an actual comparison with the most representative early stopping conditions based on overfitting identification, pointing to a promising start toward an optimal bias and variance control.spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. TIN2017-85160-C2-2-Rspa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PID2020-113230RB-C22spa
dc.description.sponsorshipXunta de Galicia | Ref. ED431C 2018/50spa
dc.language.isoengspa
dc.publisherNeural Networksspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleEarly stopping by correlating online indicators in neural networksen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1016/j.neunet.2022.11.035
dc.identifier.editorhttps://linkinghub.elsevier.com/retrieve/pii/S0893608022004920spa
dc.publisher.departamentoInformáticaspa
dc.publisher.grupoinvestigacionCOmputational LEarnigspa
dc.subject.unesco1203.04 Inteligencia Artificialspa
dc.date.updated2022-12-21T18:58:26Z
dc.computerCitationpub_title=Neural Networks|volume=159|journal_number=|start_pag=109|end_pag=124spa


Files in this item

[PDF]

    Show simple item record

    Attribution-NonCommercial-NoDerivatives 4.0 International
    Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International