Show simple item record

dc.contributor.authorCordeiro Costas, Moisés 
dc.contributor.authorVillanueva Torres, Daniel 
dc.contributor.authorEguía Oller, Pablo 
dc.contributor.authorGranada Álvarez, Enrique 
dc.date.accessioned2023-02-14T08:54:19Z
dc.date.available2023-02-14T08:54:19Z
dc.date.issued2023-05
dc.identifier.citationJournal of Energy Storage, 61, 106784 (2023)spa
dc.identifier.issn2352152X
dc.identifier.urihttp://hdl.handle.net/11093/4472
dc.description.abstractThe control of the electrical power supply is one of the key bases to reach the sustainable development goals set by United Nations. The achievement of these objectives encourages a dual strategy of creation and diffusion of renewable energies and other technologies of zero emission. Thus, meet the emerging necessities require, inevitably, a significant transformation of the building sector to improve the design of the electrical infrastructure. This improvement should be linked to advanced techniques that allows the identification of complex patterns in large amount of data, such as Deep Learning ones, in order to mitigate potential uncertainties. Accurate electricity and energy supply prediction models, in combination with storage systems will be reflected directly in efficiency improvements in buildings. In this paper, a branch of Deep Learning models, known as Standard Neural Networks, are used to predict electricity consumption and photovoltaic generation with the purpose of reduce the energy wasted, by managing the storage system using Reinforcement Learning technique. Specifically, Deep Reinforcement Learning is applied using the Deep Q-Learning agent. Furthermore, the accuracy of the predicted variables is measured by means of normalized Mean Bias Error (nMBE), and normalized Root Mean Squared Error (nRMSE). The methodologies developed are validated in an existing building, the School of Mining and Energy Engineering located on the Campus of the University of Vigo.spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. TED2021-130677B-I00spa
dc.description.sponsorshipFinanciado para publicación en acceso aberto: Universidade de Vigo/CISUGspa
dc.language.isoengspa
dc.publisherJournal of Energy Storagespa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-130677B-I00/ES
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleIntelligent energy storage management trade-off system applied to Deep Learning predictionsen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1016/j.est.2023.106784
dc.identifier.editorhttps://linkinghub.elsevier.com/retrieve/pii/S2352152X23001810spa
dc.publisher.departamentoEnxeñaría eléctricaspa
dc.publisher.departamentoEnxeñaría mecánica, máquinas e motores térmicos e fluídosspa
dc.publisher.grupoinvestigacionGrupo de Investigación en Redes Eléctricasspa
dc.publisher.grupoinvestigacionGTE (Grupo de Tecnoloxía Enerxética)spa
dc.subject.unesco3306 Ingeniería y Tecnología Eléctricasspa
dc.subject.unesco3322 Tecnología Energética
dc.subject.unesco2202.03 Electricidad
dc.date.updated2023-02-14T07:15:22Z
dc.computerCitationpub_title=Journal of Energy Storage|volume=61|journal_number=|start_pag=106784|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International